Scipeáil chuig an bpríomhábhar
Réitigh do x,y,z.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x=-y+3z-6+2c
Réitigh x+y-3z+6=2c do x.
3\left(-y+3z-6+2c\right)-y+z-t=2a -\left(-y+3z-6+2c\right)+3y-z+t=2b
Cuir -y+3z-6+2c in ionad x sa dara agus sa tríú cothromóid.
y=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a z=y-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t
Réitigh na cothromóidí seo do y agus z faoi seach.
z=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t
Cuir \frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a in ionad y sa chothromóid z=y-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t.
z=2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Réitigh z=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a-\frac{1}{2}b+\frac{3}{2}-\frac{1}{2}c+\frac{1}{4}t do z.
y=\frac{5}{2}\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a
Cuir 2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b in ionad z sa chothromóid y=\frac{5}{2}z-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a.
y=\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b
Ríomh y ó y=\frac{5}{2}\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{9}{2}+\frac{3}{2}c-\frac{1}{4}t-\frac{1}{2}a.
x=-\left(\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-6+2c
Cuir \frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b in ionad y agus 2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b in ionad z sa chothromóid x=-y+3z-6+2c.
x=-\frac{1}{2}+\frac{1}{6}c+\frac{1}{4}t+\frac{2}{3}a+\frac{1}{6}b
Ríomh x ó x=-\left(\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-6+2c.
x=-\frac{1}{2}+\frac{1}{6}c+\frac{1}{4}t+\frac{2}{3}a+\frac{1}{6}b y=\frac{1}{2}-\frac{1}{6}c-\frac{1}{4}t+\frac{1}{3}a+\frac{5}{6}b z=2-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Tá an córas réitithe anois.