Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x-3y=2
Cuir an chéad cothromóid san áireamh. Bain 3y ón dá thaobh.
x-3y=2,x+3y=8
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x-3y=2
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=3y+2
Cuir 3y leis an dá thaobh den chothromóid.
3y+2+3y=8
Cuir x in aonad 3y+2 sa chothromóid eile, x+3y=8.
6y+2=8
Suimigh 3y le 3y?
6y=6
Bain 2 ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh faoi 6.
x=3+2
Cuir y in aonad 1 in x=3y+2. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=5
Suimigh 2 le 3?
x=5,y=1
Tá an córas réitithe anois.
x-3y=2
Cuir an chéad cothromóid san áireamh. Bain 3y ón dá thaobh.
x-3y=2,x+3y=8
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-3\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\right)}&-\frac{-3}{3-\left(-3\right)}\\-\frac{1}{3-\left(-3\right)}&\frac{1}{3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\times 8\\-\frac{1}{6}\times 2+\frac{1}{6}\times 8\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
Déan an uimhríocht.
x=5,y=1
Asbhain na heilimintí maitríse x agus y.
x-3y=2
Cuir an chéad cothromóid san áireamh. Bain 3y ón dá thaobh.
x-3y=2,x+3y=8
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-x-3y-3y=2-8
Dealaigh x+3y=8 ó x-3y=2 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-3y-3y=2-8
Suimigh x le -x? Cuirtear na téarmaí x agus -x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-6y=2-8
Suimigh -3y le -3y?
-6y=-6
Suimigh 2 le -8?
y=1
Roinn an dá thaobh faoi -6.
x+3=8
Cuir y in aonad 1 in x+3y=8. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=5
Bain 3 ón dá thaobh den chothromóid.
x=5,y=1
Tá an córas réitithe anois.