Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x+2y=0,5x+2y=3
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+2y=0
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-2y
Bain 2y ón dá thaobh den chothromóid.
5\left(-2\right)y+2y=3
Cuir x in aonad -2y sa chothromóid eile, 5x+2y=3.
-10y+2y=3
Méadaigh 5 faoi -2y.
-8y=3
Suimigh -10y le 2y?
y=-\frac{3}{8}
Roinn an dá thaobh faoi -8.
x=-2\left(-\frac{3}{8}\right)
Cuir y in aonad -\frac{3}{8} in x=-2y. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{3}{4}
Méadaigh -2 faoi -\frac{3}{8}.
x=\frac{3}{4},y=-\frac{3}{8}
Tá an córas réitithe anois.
x+2y=0,5x+2y=3
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&2\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3\\-\frac{1}{8}\times 3\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\-\frac{3}{8}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{3}{4},y=-\frac{3}{8}
Asbhain na heilimintí maitríse x agus y.
x+2y=0,5x+2y=3
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-5x+2y-2y=-3
Dealaigh 5x+2y=3 ó x+2y=0 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
x-5x=-3
Suimigh 2y le -2y? Cuirtear na téarmaí 2y agus -2y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-4x=-3
Suimigh x le -5x?
x=\frac{3}{4}
Roinn an dá thaobh faoi -4.
5\times \frac{3}{4}+2y=3
Cuir x in aonad \frac{3}{4} in 5x+2y=3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
\frac{15}{4}+2y=3
Méadaigh 5 faoi \frac{3}{4}.
2y=-\frac{3}{4}
Bain \frac{15}{4} ón dá thaobh den chothromóid.
y=-\frac{3}{8}
Roinn an dá thaobh faoi 2.
x=\frac{3}{4},y=-\frac{3}{8}
Tá an córas réitithe anois.