\left\{ \begin{array} { l } { 3 x + y = - 1 } \\ { x + 5 y = 9 } \end{array} \right.
Réitigh do x,y.
x=-1
y=2
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left\{ \begin{array} { l } { 3 x + y = - 1 } \\ { x + 5 y = 9 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
3x+y=-1,x+5y=9
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+y=-1
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-y-1
Bain y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-y-1\right)
Roinn an dá thaobh faoi 3.
x=-\frac{1}{3}y-\frac{1}{3}
Méadaigh \frac{1}{3} faoi -y-1.
-\frac{1}{3}y-\frac{1}{3}+5y=9
Cuir x in aonad \frac{-y-1}{3} sa chothromóid eile, x+5y=9.
\frac{14}{3}y-\frac{1}{3}=9
Suimigh -\frac{y}{3} le 5y?
\frac{14}{3}y=\frac{28}{3}
Cuir \frac{1}{3} leis an dá thaobh den chothromóid.
y=2
Roinn an dá thaobh den chothromóid faoi \frac{14}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{1}{3}\times 2-\frac{1}{3}
Cuir y in aonad 2 in x=-\frac{1}{3}y-\frac{1}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-2-1}{3}
Méadaigh -\frac{1}{3} faoi 2.
x=-1
Suimigh -\frac{1}{3} le -\frac{2}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=-1,y=2
Tá an córas réitithe anois.
3x+y=-1,x+5y=9
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&1\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-1}&-\frac{1}{3\times 5-1}\\-\frac{1}{3\times 5-1}&\frac{3}{3\times 5-1}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{1}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-1\right)-\frac{1}{14}\times 9\\-\frac{1}{14}\left(-1\right)+\frac{3}{14}\times 9\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Déan an uimhríocht.
x=-1,y=2
Asbhain na heilimintí maitríse x agus y.
3x+y=-1,x+5y=9
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x+y=-1,3x+3\times 5y=3\times 9
Chun 3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
3x+y=-1,3x+15y=27
Simpligh.
3x-3x+y-15y=-1-27
Dealaigh 3x+15y=27 ó 3x+y=-1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
y-15y=-1-27
Suimigh 3x le -3x? Cuirtear na téarmaí 3x agus -3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-14y=-1-27
Suimigh y le -15y?
-14y=-28
Suimigh -1 le -27?
y=2
Roinn an dá thaobh faoi -14.
x+5\times 2=9
Cuir y in aonad 2 in x+5y=9. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x+10=9
Méadaigh 5 faoi 2.
x=-1
Bain 10 ón dá thaobh den chothromóid.
x=-1,y=2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}