Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int x^{5}+2x^{4}-5x^{2}\mathrm{d}x
Úsáid an t-airí dáileach chun x^{2} a mhéadú faoi x^{3}+2x^{2}-5.
\int x^{5}\mathrm{d}x+\int 2x^{4}\mathrm{d}x+\int -5x^{2}\mathrm{d}x
Measc an tsuim téarma fá téarma.
\int x^{5}\mathrm{d}x+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{x^{6}}{6}+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{5}\mathrm{d}x le \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-5\int x^{2}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{4}\mathrm{d}x le \frac{x^{5}}{5}. Méadaigh 2 faoi \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh -5 faoi \frac{x^{3}}{3}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}+С
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.