Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int 3x^{5}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 1\mathrm{d}x
Measc an tsuim téarma fá téarma.
3\int x^{5}\mathrm{d}x-3\int x^{3}\mathrm{d}x+\int 1\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{x^{6}}{2}-3\int x^{3}\mathrm{d}x+\int 1\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{5}\mathrm{d}x le \frac{x^{6}}{6}. Méadaigh 3 faoi \frac{x^{6}}{6}.
\frac{x^{6}}{2}-\frac{3x^{4}}{4}+\int 1\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{3}\mathrm{d}x le \frac{x^{4}}{4}. Méadaigh -3 faoi \frac{x^{4}}{4}.
\frac{x^{6}}{2}-\frac{3x^{4}}{4}+x
Aimsigh suimeálaithe do 1 ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}x=ax.
\frac{x^{6}}{2}-\frac{3x^{4}}{4}+x+С
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.