Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}
Simpligh.
\int \frac{x^{2}}{2}\mathrm{d}x+\int С_{4}\mathrm{d}x
Measc an tsuim téarma fá téarma.
\frac{\int x^{2}\mathrm{d}x}{2}+\int С_{4}\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{x^{3}}{6}+\int С_{4}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh \frac{1}{2} faoi \frac{x^{3}}{3}.
\frac{x^{3}}{6}+С_{4}x
Aimsigh suimeálaithe do С_{4} ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}x=ax.
\left\{\begin{matrix}\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}+С_{7},&\\\frac{x^{3}}{6}+С_{4}x+С_{7},&\end{matrix}\right.
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.