Réitigh do x.
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
x+1+\left(x-3\right)\times 2=0
Ní féidir leis an athróg x a bheith comhionann le 3 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi x-3.
x+1+2x-6=0
Úsáid an t-airí dáileach chun x-3 a mhéadú faoi 2.
3x+1-6=0
Comhcheangail x agus 2x chun 3x a fháil.
3x-5=0
Dealaigh 6 ó 1 chun -5 a fháil.
3x=5
Cuir 5 leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
x=\frac{5}{3}
Roinn an dá thaobh faoi 3.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}