Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{5}{x+1} faoi \frac{x-1}{x-1}. Méadaigh \frac{6}{x-1} faoi \frac{x+1}{x+1}.
\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Tá an t-ainmneoir céanna ag \frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} agus \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)}
Déan iolrúcháin in 5\left(x-1\right)+6\left(x+1\right).
\frac{11x+1}{\left(x-1\right)\left(x+1\right)}
Cumaisc téarmaí comhchosúla in: 5x-5+6x+6.
\frac{11x+1}{x^{2}-1}
Fairsingigh \left(x-1\right)\left(x+1\right)
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+1 agus x-1 ná \left(x-1\right)\left(x+1\right). Méadaigh \frac{5}{x+1} faoi \frac{x-1}{x-1}. Méadaigh \frac{6}{x-1} faoi \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Tá an t-ainmneoir céanna ag \frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} agus \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)})
Déan iolrúcháin in 5\left(x-1\right)+6\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{\left(x-1\right)\left(x+1\right)})
Cumaisc téarmaí comhchosúla in: 5x-5+6x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1^{2}})
Mar shampla \left(x-1\right)\left(x+1\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1})
Ríomh cumhacht 1 de 2 agus faigh 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(11x^{1}+1)-\left(11x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(x^{2}-1\right)\times 11x^{1-1}-\left(11x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(x^{2}-1\right)\times 11x^{0}-\left(11x^{1}+1\right)\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Déan an uimhríocht.
\frac{x^{2}\times 11x^{0}-11x^{0}-\left(11x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Fairsingigh ag baint úsáid as an airí dáileach.
\frac{11x^{2}-11x^{0}-\left(11\times 2x^{1+1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{11x^{2}-11x^{0}-\left(22x^{2}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Déan an uimhríocht.
\frac{11x^{2}-11x^{0}-22x^{2}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Bain lúibíní ar bith nach bhfuil gá leo.
\frac{\left(11-22\right)x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{-11x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Dealaigh 22 ó 11.
\frac{-11x^{2}-11x^{0}-2x}{\left(x^{2}-1\right)^{2}}
Do théarma ar bith t, t^{1}=t.
\frac{-11x^{2}-11-2x}{\left(x^{2}-1\right)^{2}}
Do théarma ar bith t ach amháin 0, t^{0}=1.