Réitigh do y.
y=-\frac{5x\left(20-x\right)}{x^{2}-10x-100}
x\neq 20\text{ and }x\neq 0\text{ and }x\neq 5\sqrt{5}+5\text{ and }x\neq 5-5\sqrt{5}\text{ and }x\neq -\frac{5}{3}
Réitigh do x.
\left\{\begin{matrix}x=\frac{5\left(-\sqrt{5\left(y^{2}-8y+20\right)}+y-10\right)}{y-5}\text{, }&y\neq 0\text{ and }y\neq 5\\x=\frac{5\left(\sqrt{5\left(y^{2}-8y+20\right)}+y-10\right)}{y-5}\text{, }&y\neq -\frac{65}{29}\text{ and }y\neq 5\text{ and }y\neq 0\\x=10\text{, }&y=5\end{matrix}\right.
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
\frac{ 30x \times (y+20-x) }{ (3x+5)y(20-x) } = \frac{ 6 \times (x+5) }{ 3x+5 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
-30x\left(y+20-x\right)=y\left(x-20\right)\times 6\left(x+5\right)
Ní féidir leis an athróg y a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi y\left(x-20\right)\left(3x+5\right), an comhiolraí is lú de \left(3x+5\right)y\left(20-x\right),3x+5.
-30xy-600x+30x^{2}=y\left(x-20\right)\times 6\left(x+5\right)
Úsáid an t-airí dáileach chun -30x a mhéadú faoi y+20-x.
-30xy-600x+30x^{2}=\left(yx-20y\right)\times 6\left(x+5\right)
Úsáid an t-airí dáileach chun y a mhéadú faoi x-20.
-30xy-600x+30x^{2}=\left(6yx-120y\right)\left(x+5\right)
Úsáid an t-airí dáileach chun yx-20y a mhéadú faoi 6.
-30xy-600x+30x^{2}=6yx^{2}-90yx-600y
Úsáid an t-airí dáileach chun 6yx-120y a mhéadú faoi x+5 agus chun téarmaí comhchosúla a chumasc.
-30xy-600x+30x^{2}-6yx^{2}=-90yx-600y
Bain 6yx^{2} ón dá thaobh.
-30xy-600x+30x^{2}-6yx^{2}+90yx=-600y
Cuir 90yx leis an dá thaobh.
-30xy-600x+30x^{2}-6yx^{2}+90yx+600y=0
Cuir 600y leis an dá thaobh.
60xy-600x+30x^{2}-6yx^{2}+600y=0
Comhcheangail -30xy agus 90yx chun 60xy a fháil.
60xy+30x^{2}-6yx^{2}+600y=600x
Cuir 600x leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
60xy-6yx^{2}+600y=600x-30x^{2}
Bain 30x^{2} ón dá thaobh.
\left(60x-6x^{2}+600\right)y=600x-30x^{2}
Comhcheangail na téarmaí ar fad ina bhfuil y.
\left(600+60x-6x^{2}\right)y=600x-30x^{2}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(600+60x-6x^{2}\right)y}{600+60x-6x^{2}}=\frac{30x\left(20-x\right)}{600+60x-6x^{2}}
Roinn an dá thaobh faoi 60x-6x^{2}+600.
y=\frac{30x\left(20-x\right)}{600+60x-6x^{2}}
Má roinntear é faoi 60x-6x^{2}+600 cuirtear an iolrúchán faoi 60x-6x^{2}+600 ar ceal.
y=\frac{5x\left(20-x\right)}{100+10x-x^{2}}
Roinn 30x\left(20-x\right) faoi 60x-6x^{2}+600.
y=\frac{5x\left(20-x\right)}{100+10x-x^{2}}\text{, }y\neq 0
Ní féidir leis an athróg y a bheith comhionann le 0.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}