Réitigh do y.
y=-\frac{2\left(x^{2}-x+16\right)}{x^{2}+x-16}
x\neq 0\text{ and }x\neq \frac{\sqrt{65}-1}{2}\text{ and }x\neq \frac{-\sqrt{65}-1}{2}\text{ and }x\neq 16
Réitigh do x. (complex solution)
x=\frac{\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}
x=\frac{-\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}\text{, }y\neq 2\text{ and }y\neq -2
Réitigh do x.
x=\frac{\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}
x=\frac{-\sqrt{\left(y-2\right)\left(65y+126\right)}-y+2}{2\left(y+2\right)}\text{, }y>2\text{ or }\left(y\neq -2\text{ and }y\leq -\frac{126}{65}\right)
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
\frac{ { x }^{ 2 } }{ y-2 } = \frac{ { 4 }^{ 2 } -x }{ y+2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(y+2\right)x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Ní féidir leis an athróg y a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(y-2\right)\left(y+2\right), an comhiolraí is lú de y-2,y+2.
yx^{2}+2x^{2}=\left(y-2\right)\left(4^{2}-x\right)
Úsáid an t-airí dáileach chun y+2 a mhéadú faoi x^{2}.
yx^{2}+2x^{2}=\left(y-2\right)\left(16-x\right)
Ríomh cumhacht 4 de 2 agus faigh 16.
yx^{2}+2x^{2}=16y-yx-32+2x
Úsáid an t-airí dáileach chun y-2 a mhéadú faoi 16-x.
yx^{2}+2x^{2}-16y=-yx-32+2x
Bain 16y ón dá thaobh.
yx^{2}+2x^{2}-16y+yx=-32+2x
Cuir yx leis an dá thaobh.
yx^{2}-16y+yx=-32+2x-2x^{2}
Bain 2x^{2} ón dá thaobh.
\left(x^{2}-16+x\right)y=-32+2x-2x^{2}
Comhcheangail na téarmaí ar fad ina bhfuil y.
\left(x^{2}+x-16\right)y=-2x^{2}+2x-32
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(x^{2}+x-16\right)y}{x^{2}+x-16}=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Roinn an dá thaobh faoi x^{2}-16+x.
y=\frac{-2x^{2}+2x-32}{x^{2}+x-16}
Má roinntear é faoi x^{2}-16+x cuirtear an iolrúchán faoi x^{2}-16+x ar ceal.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}
Roinn -32+2x-2x^{2} faoi x^{2}-16+x.
y=\frac{2\left(-x^{2}+x-16\right)}{x^{2}+x-16}\text{, }y\neq -2\text{ and }y\neq 2
Ní féidir leis an athróg y a bheith comhionann le haon cheann de na luachanna -2,2.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}