Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x}
Fachtóirigh x^{2}-100.
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-10\right)\left(x+10\right) agus 10-x ná \left(x-10\right)\left(x+10\right). Méadaigh \frac{2}{10-x} faoi \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
Tá an t-ainmneoir céanna ag \frac{x}{\left(x-10\right)\left(x+10\right)} agus \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)}
Déan iolrúcháin in x+2\left(-1\right)\left(x+10\right).
\frac{-x-20}{\left(x-10\right)\left(x+10\right)}
Cumaisc téarmaí comhchosúla in: x-2x-20.
\frac{-x-20}{x^{2}-100}
Fairsingigh \left(x-10\right)\left(x+10\right)
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x})
Fachtóirigh x^{2}-100.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-10\right)\left(x+10\right) agus 10-x ná \left(x-10\right)\left(x+10\right). Méadaigh \frac{2}{10-x} faoi \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
Tá an t-ainmneoir céanna ag \frac{x}{\left(x-10\right)\left(x+10\right)} agus \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)})
Déan iolrúcháin in x+2\left(-1\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{\left(x-10\right)\left(x+10\right)})
Cumaisc téarmaí comhchosúla in: x-2x-20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{x^{2}-100})
Mar shampla \left(x-10\right)\left(x+10\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Cearnóg 10.
\frac{\left(x^{2}-100\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-20)-\left(-x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-100)}{\left(x^{2}-100\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{1-1}-\left(-x^{1}-20\right)\times 2x^{2-1}}{\left(x^{2}-100\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{0}-\left(-x^{1}-20\right)\times 2x^{1}}{\left(x^{2}-100\right)^{2}}
Déan an uimhríocht.
\frac{x^{2}\left(-1\right)x^{0}-100\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Fairsingigh ag baint úsáid as an airí dáileach.
\frac{-x^{2}-100\left(-1\right)x^{0}-\left(-2x^{1+1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Déan an uimhríocht.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}\right)-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Bain lúibíní ar bith nach bhfuil gá leo.
\frac{\left(-1-\left(-2\right)\right)x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Dealaigh -2 ó -1.
\frac{x^{2}+100x^{0}-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Do théarma ar bith t, t^{1}=t.
\frac{x^{2}+100\times 1-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Do théarma ar bith t ach amháin 0, t^{0}=1.
\frac{x^{2}+100-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Do théarma ar bith t, t\times 1=t agus 1t=t.