Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x+3}{\left(x-8\right)\left(x+4\right)}-\frac{x}{\left(x+3\right)\left(x+4\right)}
Fachtóirigh x^{2}-4x-32. Fachtóirigh x^{2}+7x+12.
\frac{\left(x+3\right)\left(x+3\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}-\frac{x\left(x-8\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-8\right)\left(x+4\right) agus \left(x+3\right)\left(x+4\right) ná \left(x-8\right)\left(x+3\right)\left(x+4\right). Méadaigh \frac{x+3}{\left(x-8\right)\left(x+4\right)} faoi \frac{x+3}{x+3}. Méadaigh \frac{x}{\left(x+3\right)\left(x+4\right)} faoi \frac{x-8}{x-8}.
\frac{\left(x+3\right)\left(x+3\right)-x\left(x-8\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+3\right)\left(x+3\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)} agus \frac{x\left(x-8\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+3x+3x+9-x^{2}+8x}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Déan iolrúcháin in \left(x+3\right)\left(x+3\right)-x\left(x-8\right).
\frac{14x+9}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+3x+3x+9-x^{2}+8x.
\frac{14x+9}{x^{3}-x^{2}-44x-96}
Fairsingigh \left(x-8\right)\left(x+3\right)\left(x+4\right)
\frac{x+3}{\left(x-8\right)\left(x+4\right)}-\frac{x}{\left(x+3\right)\left(x+4\right)}
Fachtóirigh x^{2}-4x-32. Fachtóirigh x^{2}+7x+12.
\frac{\left(x+3\right)\left(x+3\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}-\frac{x\left(x-8\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-8\right)\left(x+4\right) agus \left(x+3\right)\left(x+4\right) ná \left(x-8\right)\left(x+3\right)\left(x+4\right). Méadaigh \frac{x+3}{\left(x-8\right)\left(x+4\right)} faoi \frac{x+3}{x+3}. Méadaigh \frac{x}{\left(x+3\right)\left(x+4\right)} faoi \frac{x-8}{x-8}.
\frac{\left(x+3\right)\left(x+3\right)-x\left(x-8\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+3\right)\left(x+3\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)} agus \frac{x\left(x-8\right)}{\left(x-8\right)\left(x+3\right)\left(x+4\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}+3x+3x+9-x^{2}+8x}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Déan iolrúcháin in \left(x+3\right)\left(x+3\right)-x\left(x-8\right).
\frac{14x+9}{\left(x-8\right)\left(x+3\right)\left(x+4\right)}
Cumaisc téarmaí comhchosúla in: x^{2}+3x+3x+9-x^{2}+8x.
\frac{14x+9}{x^{3}-x^{2}-44x-96}
Fairsingigh \left(x-8\right)\left(x+3\right)\left(x+4\right)