Luacháil
\frac{v+3}{v+1}
Difreálaigh w.r.t. v
-\frac{2}{\left(v+1\right)^{2}}
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { v } { v + 1 } + \frac { 3 } { v - 1 } - \frac { 6 } { v ^ { 2 } - 1 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de v+1 agus v-1 ná \left(v-1\right)\left(v+1\right). Méadaigh \frac{v}{v+1} faoi \frac{v-1}{v-1}. Méadaigh \frac{3}{v-1} faoi \frac{v+1}{v+1}.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Tá an t-ainmneoir céanna ag \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} agus \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Déan iolrúcháin in v\left(v-1\right)+3\left(v+1\right).
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Cumaisc téarmaí comhchosúla in: v^{2}-v+3v+3.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
Fachtóirigh v^{2}-1.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
Tá an t-ainmneoir céanna ag \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} agus \frac{6}{\left(v-1\right)\left(v+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
Cumaisc téarmaí comhchosúla in: v^{2}+2v+3-6.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{v+3}{v+1}
Cealaigh v-1 mar uimhreoir agus ainmneoir.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de v+1 agus v-1 ná \left(v-1\right)\left(v+1\right). Méadaigh \frac{v}{v+1} faoi \frac{v-1}{v-1}. Méadaigh \frac{3}{v-1} faoi \frac{v+1}{v+1}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Tá an t-ainmneoir céanna ag \frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} agus \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Déan iolrúcháin in v\left(v-1\right)+3\left(v+1\right).
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Cumaisc téarmaí comhchosúla in: v^{2}-v+3v+3.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
Fachtóirigh v^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
Tá an t-ainmneoir céanna ag \frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} agus \frac{6}{\left(v-1\right)\left(v+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
Cumaisc téarmaí comhchosúla in: v^{2}+2v+3-6.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
Cealaigh v-1 mar uimhreoir agus ainmneoir.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Déan an uimhríocht.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Fairsingigh ag baint úsáid as an airí dáileach.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
Bain lúibíní ar bith nach bhfuil gá leo.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
Dealaigh 1 ó 1 agus 3 ó 1.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
Do théarma ar bith t, t^{1}=t.
\frac{-2}{\left(v+1\right)^{2}}
Do théarma ar bith t ach amháin 0, t^{0}=1.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}