Luacháil
\frac{3}{a^{2}-1}
Fairsingigh
\frac{3}{a^{2}-1}
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { a + 1 } { a ^ { 2 } - a } - \frac { a - 1 } { a ^ { 2 } + a } - \frac { 1 } { a ^ { 2 } - 1 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Fachtóirigh a^{2}-a. Fachtóirigh a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a\left(a-1\right) agus a\left(a+1\right) ná a\left(a-1\right)\left(a+1\right). Méadaigh \frac{a+1}{a\left(a-1\right)} faoi \frac{a+1}{a+1}. Méadaigh \frac{a-1}{a\left(a+1\right)} faoi \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tá an t-ainmneoir céanna ag \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} agus \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Déan iolrúcháin in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cumaisc téarmaí comhchosúla in: a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cealaigh a mar uimhreoir agus ainmneoir.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Fachtóirigh a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tá an t-ainmneoir céanna ag \frac{4}{\left(a-1\right)\left(a+1\right)} agus \frac{1}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú. Dealaigh 1 ó 4 chun 3 a fháil.
\frac{3}{a^{2}-1}
Fairsingigh \left(a-1\right)\left(a+1\right)
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Fachtóirigh a^{2}-a. Fachtóirigh a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a\left(a-1\right) agus a\left(a+1\right) ná a\left(a-1\right)\left(a+1\right). Méadaigh \frac{a+1}{a\left(a-1\right)} faoi \frac{a+1}{a+1}. Méadaigh \frac{a-1}{a\left(a+1\right)} faoi \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tá an t-ainmneoir céanna ag \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} agus \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Déan iolrúcháin in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cumaisc téarmaí comhchosúla in: a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cealaigh a mar uimhreoir agus ainmneoir.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Fachtóirigh a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tá an t-ainmneoir céanna ag \frac{4}{\left(a-1\right)\left(a+1\right)} agus \frac{1}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú. Dealaigh 1 ó 4 chun 3 a fháil.
\frac{3}{a^{2}-1}
Fairsingigh \left(a-1\right)\left(a+1\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}