Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Fachtóirigh a^{2}-a. Fachtóirigh a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a\left(a-1\right) agus a\left(a+1\right) ná a\left(a-1\right)\left(a+1\right). Méadaigh \frac{a+1}{a\left(a-1\right)} faoi \frac{a+1}{a+1}. Méadaigh \frac{a-1}{a\left(a+1\right)} faoi \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tá an t-ainmneoir céanna ag \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} agus \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Déan iolrúcháin in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cumaisc téarmaí comhchosúla in: a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cealaigh a mar uimhreoir agus ainmneoir.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Fachtóirigh a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tá an t-ainmneoir céanna ag \frac{4}{\left(a-1\right)\left(a+1\right)} agus \frac{1}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú. Dealaigh 1 ó 4 chun 3 a fháil.
\frac{3}{a^{2}-1}
Fairsingigh \left(a-1\right)\left(a+1\right)
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Fachtóirigh a^{2}-a. Fachtóirigh a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a\left(a-1\right) agus a\left(a+1\right) ná a\left(a-1\right)\left(a+1\right). Méadaigh \frac{a+1}{a\left(a-1\right)} faoi \frac{a+1}{a+1}. Méadaigh \frac{a-1}{a\left(a+1\right)} faoi \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tá an t-ainmneoir céanna ag \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} agus \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Déan iolrúcháin in \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cumaisc téarmaí comhchosúla in: a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Cealaigh a mar uimhreoir agus ainmneoir.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Fachtóirigh a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tá an t-ainmneoir céanna ag \frac{4}{\left(a-1\right)\left(a+1\right)} agus \frac{1}{\left(a-1\right)\left(a+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú. Dealaigh 1 ó 4 chun 3 a fháil.
\frac{3}{a^{2}-1}
Fairsingigh \left(a-1\right)\left(a+1\right)