Luacháil
-\frac{8\sqrt{2}}{7}\approx -1.616244071
Tráth na gCeist
Arithmetic
5 fadhbanna cosúil le:
\frac { 4 - \sqrt { 2 } } { 4 + \sqrt { 2 } } - \frac { 4 + \sqrt { 2 } } { 4 - \sqrt { 2 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 4-\sqrt{2} chun ainmneoir \frac{4-\sqrt{2}}{4+\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Mar shampla \left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{16-2}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Cearnóg 4. Cearnóg \sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Dealaigh 2 ó 16 chun 14 a fháil.
\frac{\left(4-\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Méadaigh 4-\sqrt{2} agus 4-\sqrt{2} chun \left(4-\sqrt{2}\right)^{2} a fháil.
\frac{16-8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(4-\sqrt{2}\right)^{2} a leathnú.
\frac{16-8\sqrt{2}+2}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Suimigh 16 agus 2 chun 18 a fháil.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 4+\sqrt{2} chun ainmneoir \frac{4+\sqrt{2}}{4-\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Mar shampla \left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{16-2}
Cearnóg 4. Cearnóg \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{14}
Dealaigh 2 ó 16 chun 14 a fháil.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)^{2}}{14}
Méadaigh 4+\sqrt{2} agus 4+\sqrt{2} chun \left(4+\sqrt{2}\right)^{2} a fháil.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(4+\sqrt{2}\right)^{2} a leathnú.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+2}{14}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{18+8\sqrt{2}}{14}
Suimigh 16 agus 2 chun 18 a fháil.
\frac{18-8\sqrt{2}-\left(18+8\sqrt{2}\right)}{14}
Tá an t-ainmneoir céanna ag \frac{18-8\sqrt{2}}{14} agus \frac{18+8\sqrt{2}}{14} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{18-8\sqrt{2}-18-8\sqrt{2}}{14}
Déan iolrúcháin in 18-8\sqrt{2}-\left(18+8\sqrt{2}\right).
\frac{-16\sqrt{2}}{14}
Déan áirimh in 18-8\sqrt{2}-18-8\sqrt{2}.
-\frac{8}{7}\sqrt{2}
Roinn -16\sqrt{2} faoi 14 chun -\frac{8}{7}\sqrt{2} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}