Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{\left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right)}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 4-\sqrt{2} chun ainmneoir \frac{4-\sqrt{2}}{4+\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Mar shampla \left(4+\sqrt{2}\right)\left(4-\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{16-2}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Cearnóg 4. Cearnóg \sqrt{2}.
\frac{\left(4-\sqrt{2}\right)\left(4-\sqrt{2}\right)}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Dealaigh 2 ó 16 chun 14 a fháil.
\frac{\left(4-\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Méadaigh 4-\sqrt{2} agus 4-\sqrt{2} chun \left(4-\sqrt{2}\right)^{2} a fháil.
\frac{16-8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(4-\sqrt{2}\right)^{2} a leathnú.
\frac{16-8\sqrt{2}+2}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{4+\sqrt{2}}{4-\sqrt{2}}
Suimigh 16 agus 2 chun 18 a fháil.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{\left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 4+\sqrt{2} chun ainmneoir \frac{4+\sqrt{2}}{4-\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{4^{2}-\left(\sqrt{2}\right)^{2}}
Mar shampla \left(4-\sqrt{2}\right)\left(4+\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{16-2}
Cearnóg 4. Cearnóg \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)\left(4+\sqrt{2}\right)}{14}
Dealaigh 2 ó 16 chun 14 a fháil.
\frac{18-8\sqrt{2}}{14}-\frac{\left(4+\sqrt{2}\right)^{2}}{14}
Méadaigh 4+\sqrt{2} agus 4+\sqrt{2} chun \left(4+\sqrt{2}\right)^{2} a fháil.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+\left(\sqrt{2}\right)^{2}}{14}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(4+\sqrt{2}\right)^{2} a leathnú.
\frac{18-8\sqrt{2}}{14}-\frac{16+8\sqrt{2}+2}{14}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{18-8\sqrt{2}}{14}-\frac{18+8\sqrt{2}}{14}
Suimigh 16 agus 2 chun 18 a fháil.
\frac{18-8\sqrt{2}-\left(18+8\sqrt{2}\right)}{14}
Tá an t-ainmneoir céanna ag \frac{18-8\sqrt{2}}{14} agus \frac{18+8\sqrt{2}}{14} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{18-8\sqrt{2}-18-8\sqrt{2}}{14}
Déan iolrúcháin in 18-8\sqrt{2}-\left(18+8\sqrt{2}\right).
\frac{-16\sqrt{2}}{14}
Déan áirimh in 18-8\sqrt{2}-18-8\sqrt{2}.
-\frac{8}{7}\sqrt{2}
Roinn -16\sqrt{2} faoi 14 chun -\frac{8}{7}\sqrt{2} a fháil.