Scipeáil chuig an bpríomhábhar
Réitigh do w.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2=\frac{1}{4}w\left(3^{\frac{1}{2}}-i\right)\left(1+i\right)
Ní féidir leis an athróg w a bheith comhionann le 0 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi w.
2=\left(\frac{1}{4}\times 1+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Méadaigh \frac{1}{4} faoi 1+i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Déan iolrúcháin in \frac{1}{4}\times 1+\frac{1}{4}i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w
Úsáid an t-airí dáileach chun \left(\frac{1}{4}+\frac{1}{4}i\right)w a mhéadú faoi 3^{\frac{1}{2}}-i.
\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)w+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Athordaigh na téarmaí.
\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w=2
Comhcheangail na téarmaí ar fad ina bhfuil w.
\frac{\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Roinn an dá thaobh faoi \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Má roinntear é faoi \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right) cuirtear an iolrúchán faoi \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right) ar ceal.
w=\frac{8}{\sqrt{3}\left(1+i\right)+\left(1-i\right)}
Roinn 2 faoi \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).