Luacháil
\frac{1}{1-r^{2}}
Difreálaigh w.r.t. r
\frac{2r}{\left(1-r^{2}\right)^{2}}
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { 1 } { 1 - r } - \frac { r } { 1 - r ^ { 2 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{1}{1-r}-\frac{r}{\left(r-1\right)\left(-r-1\right)}
Fachtóirigh 1-r^{2}.
\frac{-\left(r+1\right)}{\left(r-1\right)\left(r+1\right)}-\frac{-r}{\left(r-1\right)\left(r+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 1-r agus \left(r-1\right)\left(-r-1\right) ná \left(r-1\right)\left(r+1\right). Méadaigh \frac{1}{1-r} faoi \frac{-\left(r+1\right)}{-\left(r+1\right)}. Méadaigh \frac{r}{\left(r-1\right)\left(-r-1\right)} faoi \frac{-1}{-1}.
\frac{-\left(r+1\right)-\left(-r\right)}{\left(r-1\right)\left(r+1\right)}
Tá an t-ainmneoir céanna ag \frac{-\left(r+1\right)}{\left(r-1\right)\left(r+1\right)} agus \frac{-r}{\left(r-1\right)\left(r+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{-r-1+r}{\left(r-1\right)\left(r+1\right)}
Déan iolrúcháin in -\left(r+1\right)-\left(-r\right).
\frac{-1}{\left(r-1\right)\left(r+1\right)}
Cumaisc téarmaí comhchosúla in: -r-1+r.
\frac{-1}{r^{2}-1}
Fairsingigh \left(r-1\right)\left(r+1\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}