Luacháil
\frac{\sqrt{5}}{3}\approx 0.745355992
Tráth na gCeist
Arithmetic
\frac { \sqrt { 5 } \div [ \sqrt { 8 } + \sqrt { 5 } ] } { \sqrt { 8 } - \sqrt { 5 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}}}{\sqrt{8}-\sqrt{5}}
Fachtóirigh 8=2^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{2}. Tóg fréamh chearnach 2^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)}}{\sqrt{8}-\sqrt{5}}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2\sqrt{2}-\sqrt{5} chun ainmneoir \frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Mar shampla \left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Fairsingigh \left(2\sqrt{2}\right)^{2}
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Méadaigh 4 agus 2 chun 8 a fháil.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-5}}{\sqrt{8}-\sqrt{5}}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{\sqrt{8}-\sqrt{5}}
Dealaigh 5 ó 8 chun 3 a fháil.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}}
Fachtóirigh 8=2^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{2}. Tóg fréamh chearnach 2^{2}.
\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3\left(2\sqrt{2}-\sqrt{5}\right)}
Scríobh \frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}} mar chodán aonair.
\frac{\sqrt{5}}{3}
Cealaigh -\sqrt{5}+2\sqrt{2} mar uimhreoir agus ainmneoir.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}