Réitigh do n. (complex solution)
\left\{\begin{matrix}n=-\frac{1}{\Delta -1}\text{, }&\Delta \neq 1\\n\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Réitigh do x. (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&\Delta =\frac{n-1}{n}\text{ and }n\neq 0\end{matrix}\right.
Réitigh do n.
\left\{\begin{matrix}n=-\frac{1}{\Delta -1}\text{, }&\Delta \neq 1\\n\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&\Delta =\frac{n-1}{n}\text{ and }n\neq 0\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\Delta xn=xn-x
Úsáid an t-airí dáileach chun x a mhéadú faoi n-1.
\Delta xn-xn=-x
Bain xn ón dá thaobh.
\left(\Delta x-x\right)n=-x
Comhcheangail na téarmaí ar fad ina bhfuil n.
\left(x\Delta -x\right)n=-x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(x\Delta -x\right)n}{x\Delta -x}=-\frac{x}{x\Delta -x}
Roinn an dá thaobh faoi \Delta x-x.
n=-\frac{x}{x\Delta -x}
Má roinntear é faoi \Delta x-x cuirtear an iolrúchán faoi \Delta x-x ar ceal.
n=-\frac{1}{\Delta -1}
Roinn -x faoi \Delta x-x.
\Delta xn=xn-x
Úsáid an t-airí dáileach chun x a mhéadú faoi n-1.
\Delta xn-xn=-x
Bain xn ón dá thaobh.
\Delta xn-xn+x=0
Cuir x leis an dá thaobh.
\left(\Delta n-n+1\right)x=0
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(n\Delta -n+1\right)x=0
Tá an chothromóid i bhfoirm chaighdeánach.
x=0
Roinn 0 faoi n\Delta -n+1.
\Delta xn=xn-x
Úsáid an t-airí dáileach chun x a mhéadú faoi n-1.
\Delta xn-xn=-x
Bain xn ón dá thaobh.
\left(\Delta x-x\right)n=-x
Comhcheangail na téarmaí ar fad ina bhfuil n.
\left(x\Delta -x\right)n=-x
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(x\Delta -x\right)n}{x\Delta -x}=-\frac{x}{x\Delta -x}
Roinn an dá thaobh faoi \Delta x-x.
n=-\frac{x}{x\Delta -x}
Má roinntear é faoi \Delta x-x cuirtear an iolrúchán faoi \Delta x-x ar ceal.
n=-\frac{1}{\Delta -1}
Roinn -x faoi \Delta x-x.
\Delta xn=xn-x
Úsáid an t-airí dáileach chun x a mhéadú faoi n-1.
\Delta xn-xn=-x
Bain xn ón dá thaobh.
\Delta xn-xn+x=0
Cuir x leis an dá thaobh.
\left(\Delta n-n+1\right)x=0
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(n\Delta -n+1\right)x=0
Tá an chothromóid i bhfoirm chaighdeánach.
x=0
Roinn 0 faoi n\Delta -n+1.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}