Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

\left(x^{4}-1\right)\left(x^{4}+1\right)
Réécrire x^{8}-1 en tant qu’\left(x^{4}\right)^{2}-1^{2}. La différence de carrés peut être factorisée à l’aide de la règle : a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-1\right)\left(x^{2}+1\right)
Considérer x^{4}-1. Réécrire x^{4}-1 en tant qu’\left(x^{2}\right)^{2}-1^{2}. La différence de carrés peut être factorisée à l’aide de la règle : a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
Considérer x^{2}-1. Réécrire x^{2}-1 en tant qu’x^{2}-1^{2}. La différence de carrés peut être factorisée à l’aide de la règle : a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Réécrivez l’expression factorisée complète. Les polynômes suivantes ne sont pas factorisées, car elles n’ont pas de racines Rational : x^{2}+1,x^{4}+1.