Calculer a
a=-\frac{9}{a_{3}-b^{2}}
a_{3}\neq b^{2}
Calculer a_3
a_{3}=b^{2}-\frac{9}{a}
a\neq 0
Partager
Copié dans le Presse-papiers
aa_{3}+9=ab^{2}
Multiplier b et b pour obtenir b^{2}.
aa_{3}+9-ab^{2}=0
Soustraire ab^{2} des deux côtés.
aa_{3}-ab^{2}=-9
Soustraire 9 des deux côtés. Toute valeur soustraite de zéro donne son opposé.
\left(a_{3}-b^{2}\right)a=-9
Combiner tous les termes contenant a.
\frac{\left(a_{3}-b^{2}\right)a}{a_{3}-b^{2}}=-\frac{9}{a_{3}-b^{2}}
Divisez les deux côtés par a_{3}-b^{2}.
a=-\frac{9}{a_{3}-b^{2}}
La division par a_{3}-b^{2} annule la multiplication par a_{3}-b^{2}.
aa_{3}+9=ab^{2}
Multiplier b et b pour obtenir b^{2}.
aa_{3}=ab^{2}-9
Soustraire 9 des deux côtés.
\frac{aa_{3}}{a}=\frac{ab^{2}-9}{a}
Divisez les deux côtés par a.
a_{3}=\frac{ab^{2}-9}{a}
La division par a annule la multiplication par a.
a_{3}=b^{2}-\frac{9}{a}
Diviser ab^{2}-9 par a.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}