9 L = d Z \cdot \varepsilon
Calculer Z (solution complexe)
\left\{\begin{matrix}Z=\frac{9L}{d\epsilon }\text{, }&\epsilon \neq 0\text{ and }d\neq 0\\Z\in \mathrm{C}\text{, }&\left(\epsilon =0\text{ or }d=0\right)\text{ and }L=0\end{matrix}\right,
Calculer L
L=\frac{Zd\epsilon }{9}
Calculer Z
\left\{\begin{matrix}Z=\frac{9L}{d\epsilon }\text{, }&\epsilon \neq 0\text{ and }d\neq 0\\Z\in \mathrm{R}\text{, }&\left(\epsilon =0\text{ or }d=0\right)\text{ and }L=0\end{matrix}\right,
Partager
Copié dans le Presse-papiers
dZ\epsilon =9L
Échanger les côtés afin que tous les termes de variable soient à gauche.
d\epsilon Z=9L
L’équation utilise le format standard.
\frac{d\epsilon Z}{d\epsilon }=\frac{9L}{d\epsilon }
Divisez les deux côtés par d\epsilon .
Z=\frac{9L}{d\epsilon }
La division par d\epsilon annule la multiplication par d\epsilon .
9L=Zd\epsilon
L’équation utilise le format standard.
\frac{9L}{9}=\frac{Zd\epsilon }{9}
Divisez les deux côtés par 9.
L=\frac{Zd\epsilon }{9}
La division par 9 annule la multiplication par 9.
dZ\epsilon =9L
Échanger les côtés afin que tous les termes de variable soient à gauche.
d\epsilon Z=9L
L’équation utilise le format standard.
\frac{d\epsilon Z}{d\epsilon }=\frac{9L}{d\epsilon }
Divisez les deux côtés par d\epsilon .
Z=\frac{9L}{d\epsilon }
La division par d\epsilon annule la multiplication par d\epsilon .
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}