Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

5\left(a^{2}b-2ab-8b\right)
Exclure 5.
b\left(a^{2}-2a-8\right)
Considérer a^{2}b-2ab-8b. Exclure b.
p+q=-2 pq=1\left(-8\right)=-8
Considérer a^{2}-2a-8. Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme a^{2}+pa+qa-8. Pour rechercher p et q, configurez un système à résoudre.
1,-8 2,-4
Étant donné que pq est négatif, p et q ont des signes opposés. Étant donné que p+q est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -8.
1-8=-7 2-4=-2
Calculez la somme de chaque paire.
p=-4 q=2
La solution est la paire qui donne la somme -2.
\left(a^{2}-4a\right)+\left(2a-8\right)
Réécrire a^{2}-2a-8 en tant qu’\left(a^{2}-4a\right)+\left(2a-8\right).
a\left(a-4\right)+2\left(a-4\right)
Factorisez a du premier et 2 dans le deuxième groupe.
\left(a-4\right)\left(a+2\right)
Factoriser le facteur commun a-4 en utilisant la distributivité.
5b\left(a-4\right)\left(a+2\right)
Réécrivez l’expression factorisée complète.