Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

49x^{2}+2x-15=0
Le polynôme quadratique peut être factorisé à l’aide de la transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), où x_{1} et x_{2} sont les solutions de l’équation quadratique ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 49\left(-15\right)}}{2\times 49}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-2±\sqrt{4-4\times 49\left(-15\right)}}{2\times 49}
Calculer le carré de 2.
x=\frac{-2±\sqrt{4-196\left(-15\right)}}{2\times 49}
Multiplier -4 par 49.
x=\frac{-2±\sqrt{4+2940}}{2\times 49}
Multiplier -196 par -15.
x=\frac{-2±\sqrt{2944}}{2\times 49}
Additionner 4 et 2940.
x=\frac{-2±8\sqrt{46}}{2\times 49}
Extraire la racine carrée de 2944.
x=\frac{-2±8\sqrt{46}}{98}
Multiplier 2 par 49.
x=\frac{8\sqrt{46}-2}{98}
Résolvez maintenant l’équation x=\frac{-2±8\sqrt{46}}{98} lorsque ± est positif. Additionner -2 et 8\sqrt{46}.
x=\frac{4\sqrt{46}-1}{49}
Diviser -2+8\sqrt{46} par 98.
x=\frac{-8\sqrt{46}-2}{98}
Résolvez maintenant l’équation x=\frac{-2±8\sqrt{46}}{98} lorsque ± est négatif. Soustraire 8\sqrt{46} à -2.
x=\frac{-4\sqrt{46}-1}{49}
Diviser -2-8\sqrt{46} par 98.
49x^{2}+2x-15=49\left(x-\frac{4\sqrt{46}-1}{49}\right)\left(x-\frac{-4\sqrt{46}-1}{49}\right)
Factorisez l’expression d’origine à l’aide de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Remplacez \frac{-1+4\sqrt{46}}{49} par x_{1} et \frac{-1-4\sqrt{46}}{49} par x_{2}.