Calculer x
x = -\frac{15}{4} = -3\frac{3}{4} = -3,75
Graphique
Partager
Copié dans le Presse-papiers
-2x-\frac{1}{2}=7
Combiner 3x et -5x pour obtenir -2x.
-2x=7+\frac{1}{2}
Ajouter \frac{1}{2} aux deux côtés.
-2x=\frac{14}{2}+\frac{1}{2}
Convertir 7 en fraction \frac{14}{2}.
-2x=\frac{14+1}{2}
Étant donné que \frac{14}{2} et \frac{1}{2} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
-2x=\frac{15}{2}
Additionner 14 et 1 pour obtenir 15.
x=\frac{\frac{15}{2}}{-2}
Divisez les deux côtés par -2.
x=\frac{15}{2\left(-2\right)}
Exprimer \frac{\frac{15}{2}}{-2} sous la forme d’une fraction seule.
x=\frac{15}{-4}
Multiplier 2 et -2 pour obtenir -4.
x=-\frac{15}{4}
La fraction \frac{15}{-4} peut être réécrite comme -\frac{15}{4} en extrayant le signe négatif.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}