Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

\left(3x+1\right)\left(x^{2}-2x-8\right)
Par le nome racine Rational, toutes les racines rationnelles d’un polynôme se présentent sous la forme \frac{p}{q}, où p divise le terme constant -8 et q divise le 3 de coefficients de début. Une racine de ce type est -\frac{1}{3}. Factoriser le polynôme en le divisant par 3x+1.
a+b=-2 ab=1\left(-8\right)=-8
Considérer x^{2}-2x-8. Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme x^{2}+ax+bx-8. Pour rechercher a et b, configurez un système à résoudre.
1,-8 2,-4
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -8.
1-8=-7 2-4=-2
Calculez la somme de chaque paire.
a=-4 b=2
La solution est la paire qui donne la somme -2.
\left(x^{2}-4x\right)+\left(2x-8\right)
Réécrire x^{2}-2x-8 en tant qu’\left(x^{2}-4x\right)+\left(2x-8\right).
x\left(x-4\right)+2\left(x-4\right)
Factorisez x du premier et 2 dans le deuxième groupe.
\left(x-4\right)\left(x+2\right)
Factoriser le facteur commun x-4 en utilisant la distributivité.
\left(x-4\right)\left(3x+1\right)\left(x+2\right)
Réécrivez l’expression factorisée complète.