Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

x^{2}-10x+25
Réorganisez le polynôme pour utiliser le format standard. Ordonnez les termes de la puissance la plus élevée à la plus faible.
a+b=-10 ab=1\times 25=25
Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme x^{2}+ax+bx+25. Pour rechercher a et b, configurez un système à résoudre.
-1,-25 -5,-5
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est négatif, a et b sont négatives. Répertoriez toutes les paires de ce nombre entier qui donnent le produit 25.
-1-25=-26 -5-5=-10
Calculez la somme de chaque paire.
a=-5 b=-5
La solution est la paire qui donne la somme -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Réécrire x^{2}-10x+25 en tant qu’\left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Factorisez x du premier et -5 dans le deuxième groupe.
\left(x-5\right)\left(x-5\right)
Factoriser le facteur commun x-5 en utilisant la distributivité.
\left(x-5\right)^{2}
Réécrire sous la forme d’un binôme carré.
factor(x^{2}-10x+25)
Ce trinôme a la forme d’un trinôme carré, éventuellement multiplié par un facteur commun. Les trinômes carrés peuvent être factorisés en recherchant les racines carrées des termes de début et de fin.
\sqrt{25}=5
Trouver la racine carrée du terme de fin, 25.
\left(x-5\right)^{2}
Le trinôme carré est le carré du binôme correspondant à la somme ou à la différence des racines carrées des termes de début et de fin, le signe étant déterminé par le signe du terme du milieu du trinôme carré.
x^{2}-10x+25=0
Le polynôme quadratique peut être factorisé à l’aide de la transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), où x_{1} et x_{2} sont les solutions de l’équation quadratique ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Calculer le carré de -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Multiplier -4 par 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
Additionner 100 et -100.
x=\frac{-\left(-10\right)±0}{2}
Extraire la racine carrée de 0.
x=\frac{10±0}{2}
L’inverse de -10 est 10.
x^{2}-10x+25=\left(x-5\right)\left(x-5\right)
Factorisez l’expression d’origine à l’aide de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Remplacez 5 par x_{1} et 5 par x_{2}.