Calculer x
x=\frac{\sqrt{66}}{2}-4\approx 0,062019202
x=-\frac{\sqrt{66}}{2}-4\approx -8,062019202
Graphique
Partager
Copié dans le Presse-papiers
2x^{2}+16x-1=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-16±\sqrt{16^{2}-4\times 2\left(-1\right)}}{2\times 2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 2 à a, 16 à b et -1 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\left(-1\right)}}{2\times 2}
Calculer le carré de 16.
x=\frac{-16±\sqrt{256-8\left(-1\right)}}{2\times 2}
Multiplier -4 par 2.
x=\frac{-16±\sqrt{256+8}}{2\times 2}
Multiplier -8 par -1.
x=\frac{-16±\sqrt{264}}{2\times 2}
Additionner 256 et 8.
x=\frac{-16±2\sqrt{66}}{2\times 2}
Extraire la racine carrée de 264.
x=\frac{-16±2\sqrt{66}}{4}
Multiplier 2 par 2.
x=\frac{2\sqrt{66}-16}{4}
Résolvez maintenant l’équation x=\frac{-16±2\sqrt{66}}{4} lorsque ± est positif. Additionner -16 et 2\sqrt{66}.
x=\frac{\sqrt{66}}{2}-4
Diviser -16+2\sqrt{66} par 4.
x=\frac{-2\sqrt{66}-16}{4}
Résolvez maintenant l’équation x=\frac{-16±2\sqrt{66}}{4} lorsque ± est négatif. Soustraire 2\sqrt{66} à -16.
x=-\frac{\sqrt{66}}{2}-4
Diviser -16-2\sqrt{66} par 4.
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
L’équation est désormais résolue.
2x^{2}+16x-1=0
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
2x^{2}+16x-1-\left(-1\right)=-\left(-1\right)
Ajouter 1 aux deux côtés de l’équation.
2x^{2}+16x=-\left(-1\right)
La soustraction de -1 de lui-même donne 0.
2x^{2}+16x=1
Soustraire -1 à 0.
\frac{2x^{2}+16x}{2}=\frac{1}{2}
Divisez les deux côtés par 2.
x^{2}+\frac{16}{2}x=\frac{1}{2}
La division par 2 annule la multiplication par 2.
x^{2}+8x=\frac{1}{2}
Diviser 16 par 2.
x^{2}+8x+4^{2}=\frac{1}{2}+4^{2}
Divisez 8, le coefficient de la x terme, par 2 pour récupérer 4. Ajouter ensuite le carré de 4 aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}+8x+16=\frac{1}{2}+16
Calculer le carré de 4.
x^{2}+8x+16=\frac{33}{2}
Additionner \frac{1}{2} et 16.
\left(x+4\right)^{2}=\frac{33}{2}
Factor x^{2}+8x+16. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{33}{2}}
Extraire la racine carrée des deux côtés de l’équation.
x+4=\frac{\sqrt{66}}{2} x+4=-\frac{\sqrt{66}}{2}
Simplifier.
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
Soustraire 4 des deux côtés de l’équation.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}