Évaluer
\left(2a-5\right)\left(4a+7\right)
Développer
8a^{2}-6a-35
Partager
Copié dans le Presse-papiers
9a^{2}+6a+1-\left(a+6\right)^{2}
Utilisez la formule du binôme \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pour développer \left(3a+1\right)^{2}.
9a^{2}+6a+1-\left(a^{2}+12a+36\right)
Utilisez la formule du binôme \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pour développer \left(a+6\right)^{2}.
9a^{2}+6a+1-a^{2}-12a-36
Pour trouver l’opposé de a^{2}+12a+36, recherchez l’opposé de chaque terme.
8a^{2}+6a+1-12a-36
Combiner 9a^{2} et -a^{2} pour obtenir 8a^{2}.
8a^{2}-6a+1-36
Combiner 6a et -12a pour obtenir -6a.
8a^{2}-6a-35
Soustraire 36 de 1 pour obtenir -35.
9a^{2}+6a+1-\left(a+6\right)^{2}
Utilisez la formule du binôme \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pour développer \left(3a+1\right)^{2}.
9a^{2}+6a+1-\left(a^{2}+12a+36\right)
Utilisez la formule du binôme \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pour développer \left(a+6\right)^{2}.
9a^{2}+6a+1-a^{2}-12a-36
Pour trouver l’opposé de a^{2}+12a+36, recherchez l’opposé de chaque terme.
8a^{2}+6a+1-12a-36
Combiner 9a^{2} et -a^{2} pour obtenir 8a^{2}.
8a^{2}-6a+1-36
Combiner 6a et -12a pour obtenir -6a.
8a^{2}-6a-35
Soustraire 36 de 1 pour obtenir -35.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}