Aller au contenu principal
Évaluer
Tick mark Image
Développer
Tick mark Image

Partager

\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{2}{3}x^{2}y^{2} et -\frac{3}{2}x^{2}y^{2} pour obtenir -\frac{5}{6}x^{2}y^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Étendre \left(-\frac{5}{6}x^{2}y^{2}\right)^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculer -\frac{5}{6} à la puissance 2 et obtenir \frac{25}{36}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{1}{4}xy et -\frac{7}{8}xy pour obtenir -\frac{5}{8}xy.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Étendre \left(-\frac{5}{8}xy\right)^{2}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculer -\frac{5}{8} à la puissance 2 et obtenir \frac{25}{64}.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Annuler x^{2}y^{2} dans le numérateur et le dénominateur.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Diviser \frac{25}{36}x^{2}y^{2} par \frac{25}{64} en multipliant \frac{25}{36}x^{2}y^{2} par la réciproque de \frac{25}{64}.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Multiplier \frac{25}{36} et 64 pour obtenir \frac{400}{9}.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Diviser \frac{400}{9}x^{2}y^{2} par 25 pour obtenir \frac{16}{9}x^{2}y^{2}.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{5}{3}x^{2}y^{2} et -\frac{1}{6}x^{2}y^{2} pour obtenir \frac{3}{2}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{16}{9}x^{2}y^{2} et -\frac{3}{2}x^{2}y^{2} pour obtenir \frac{5}{18}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
Combiner \frac{4}{3}xy et -\frac{2}{5}xy pour obtenir \frac{14}{15}xy.
\frac{7}{27}x^{2}y^{2}xy
Multiplier \frac{5}{18} et \frac{14}{15} pour obtenir \frac{7}{27}.
\frac{7}{27}x^{3}y^{2}y
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\frac{7}{27}x^{3}y^{3}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{2}{3}x^{2}y^{2} et -\frac{3}{2}x^{2}y^{2} pour obtenir -\frac{5}{6}x^{2}y^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Étendre \left(-\frac{5}{6}x^{2}y^{2}\right)^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pour élever une puissance à une autre puissance, multipliez les exposants. Multipliez 2 par 2 pour obtenir 4.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculer -\frac{5}{6} à la puissance 2 et obtenir \frac{25}{36}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{1}{4}xy et -\frac{7}{8}xy pour obtenir -\frac{5}{8}xy.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Étendre \left(-\frac{5}{8}xy\right)^{2}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculer -\frac{5}{8} à la puissance 2 et obtenir \frac{25}{64}.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Annuler x^{2}y^{2} dans le numérateur et le dénominateur.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Diviser \frac{25}{36}x^{2}y^{2} par \frac{25}{64} en multipliant \frac{25}{36}x^{2}y^{2} par la réciproque de \frac{25}{64}.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Multiplier \frac{25}{36} et 64 pour obtenir \frac{400}{9}.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Diviser \frac{400}{9}x^{2}y^{2} par 25 pour obtenir \frac{16}{9}x^{2}y^{2}.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{5}{3}x^{2}y^{2} et -\frac{1}{6}x^{2}y^{2} pour obtenir \frac{3}{2}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combiner \frac{16}{9}x^{2}y^{2} et -\frac{3}{2}x^{2}y^{2} pour obtenir \frac{5}{18}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
Combiner \frac{4}{3}xy et -\frac{2}{5}xy pour obtenir \frac{14}{15}xy.
\frac{7}{27}x^{2}y^{2}xy
Multiplier \frac{5}{18} et \frac{14}{15} pour obtenir \frac{7}{27}.
\frac{7}{27}x^{3}y^{2}y
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\frac{7}{27}x^{3}y^{3}
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.