Aller au contenu principal
Évaluer
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\int _{1}^{2}x^{3}\mathrm{d}x
Pour multiplier les puissances de la même base, additionnez leurs exposants. Additionnez 2 et 1 pour obtenir 3.
\int x^{3}\mathrm{d}x
Évaluez l’intégrale indéfinie en premier.
\frac{x^{4}}{4}
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{3}\mathrm{d}x par \frac{x^{4}}{4}.
\frac{2^{4}}{4}-\frac{1^{4}}{4}
L’intégrale définie est la primitive de l'expression évaluée à la limite supérieure de l’intégration moins la primitive évaluée à la limite inférieure de l’intégration.
\frac{15}{4}
Simplifier.