Aller au contenu principal
Évaluer
Tick mark Image
Différencier w.r.t. x
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\int x^{2}\mathrm{d}x+\int -2\sqrt{x}\mathrm{d}x
Intégrez le terme somme par terme.
\int x^{2}\mathrm{d}x-2\int \sqrt{x}\mathrm{d}x
Factorisez la constante dans chaque terme.
\frac{x^{3}}{3}-2\int \sqrt{x}\mathrm{d}x
Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{2}\mathrm{d}x par \frac{x^{3}}{3}.
\frac{x^{3}-4x^{\frac{3}{2}}}{3}
Réécrire \sqrt{x} en tant qu’x^{\frac{1}{2}}. Dans la mesure où \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pour k\neq -1, remplacez \int x^{\frac{1}{2}}\mathrm{d}x par \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplifier. Multiplier -2 par \frac{2x^{\frac{3}{2}}}{3}.
\frac{x^{3}}{3}-\frac{4x^{\frac{3}{2}}}{3}+С
Si F\left(x\right) est une primitive de f\left(x\right), l’ensemble de tous les dérivés de f\left(x\right) est donné par F\left(x\right)+C. Par conséquent, ajoutez la constante de l’intégration C\in \mathrm{R} au résultat.