Aller au contenu principal
Évaluer
Tick mark Image
Développer
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Considérer \left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calculer le carré de \frac{1}{3}.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Étendre \left(\frac{1}{2}a\right)^{2}.
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Calculer \frac{1}{2} à la puissance 2 et obtenir \frac{1}{4}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Calculer le carré de \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Pour trouver l’opposé de 2a^{2}-\frac{3}{8}a, recherchez l’opposé de chaque terme.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1}{4}a^{2} et -2a^{2} pour obtenir -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Utiliser la distributivité pour multiplier \frac{7}{2}a^{2} par -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Pour trouver l’opposé de 2a^{2}-\frac{3}{8}a, recherchez l’opposé de chaque terme.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1}{4}a^{2} et -2a^{2} pour obtenir -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Calculer le carré de -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{49}{8}a^{4} et \frac{49}{16}a^{4} pour obtenir -\frac{49}{16}a^{4}.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{21}{16}a^{3} et -\frac{21}{16}a^{3} pour obtenir 0.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{7}{18}a^{2} et \frac{305}{576}a^{2} pour obtenir \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{49}{16}a^{4} et \frac{49}{16}a^{4} pour obtenir 0.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Pour trouver l’opposé de 2a^{2}-\frac{3}{8}a, recherchez l’opposé de chaque terme.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1}{4}a^{2} et -2a^{2} pour obtenir -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Utiliser la distributivité pour multiplier -\frac{16}{9} par -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{9}{64}a^{2} et \frac{28}{9}a^{2} pour obtenir \frac{1873}{576}a^{2}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Additionner \frac{1}{81} et \frac{16}{81} pour obtenir \frac{17}{81}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{1}{12}a et -\frac{2}{3}a pour obtenir -\frac{3}{4}a.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1873}{576}a^{2} et -\frac{28}{9}a^{2} pour obtenir \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Additionner \frac{17}{81} et \frac{64}{81} pour obtenir 1.
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Combiner \frac{7}{64}a^{2} et \frac{9}{64}a^{2} pour obtenir \frac{1}{4}a^{2}.
\frac{1}{4}a^{2}-a+1
Combiner -\frac{3}{4}a et -\frac{1}{4}a pour obtenir -a.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Considérer \left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Calculer le carré de \frac{1}{3}.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Étendre \left(\frac{1}{2}a\right)^{2}.
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Calculer \frac{1}{2} à la puissance 2 et obtenir \frac{1}{4}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Calculer le carré de \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Pour trouver l’opposé de 2a^{2}-\frac{3}{8}a, recherchez l’opposé de chaque terme.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1}{4}a^{2} et -2a^{2} pour obtenir -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Utiliser la distributivité pour multiplier \frac{7}{2}a^{2} par -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Pour trouver l’opposé de 2a^{2}-\frac{3}{8}a, recherchez l’opposé de chaque terme.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1}{4}a^{2} et -2a^{2} pour obtenir -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Calculer le carré de -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{49}{8}a^{4} et \frac{49}{16}a^{4} pour obtenir -\frac{49}{16}a^{4}.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{21}{16}a^{3} et -\frac{21}{16}a^{3} pour obtenir 0.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{7}{18}a^{2} et \frac{305}{576}a^{2} pour obtenir \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{49}{16}a^{4} et \frac{49}{16}a^{4} pour obtenir 0.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Pour trouver l’opposé de 2a^{2}-\frac{3}{8}a, recherchez l’opposé de chaque terme.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1}{4}a^{2} et -2a^{2} pour obtenir -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Utiliser la distributivité pour multiplier -\frac{16}{9} par -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{9}{64}a^{2} et \frac{28}{9}a^{2} pour obtenir \frac{1873}{576}a^{2}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Additionner \frac{1}{81} et \frac{16}{81} pour obtenir \frac{17}{81}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Combiner -\frac{1}{12}a et -\frac{2}{3}a pour obtenir -\frac{3}{4}a.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
Combiner \frac{1873}{576}a^{2} et -\frac{28}{9}a^{2} pour obtenir \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Additionner \frac{17}{81} et \frac{64}{81} pour obtenir 1.
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Combiner \frac{7}{64}a^{2} et \frac{9}{64}a^{2} pour obtenir \frac{1}{4}a^{2}.
\frac{1}{4}a^{2}-a+1
Combiner -\frac{3}{4}a et -\frac{1}{4}a pour obtenir -a.