Calculer y (solution complexe)
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0\text{ and }x\neq \frac{5+\sqrt{35}i}{3}\text{ and }x\neq \frac{-\sqrt{35}i+5}{3}
Calculer y
y=-\frac{10x^{2}}{-3x^{2}+10x-20}
x\neq 0
Calculer x (solution complexe)
\left\{\begin{matrix}x=\frac{\sqrt{5}\left(\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{; }x=\frac{\sqrt{5}\left(-\sqrt{y\left(40-7y\right)}+\sqrt{5}y\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\neq 0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Calculer x
\left\{\begin{matrix}x=\frac{\sqrt{5y}\left(\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{; }x=\frac{\sqrt{5y}\left(-\sqrt{40-7y}+\sqrt{5y}\right)}{3y-10}\text{, }&y\neq \frac{10}{3}\text{ and }y\leq \frac{40}{7}\text{ and }y>0\\x=2\text{, }&y=\frac{10}{3}\end{matrix}\right,
Graphique
Quiz
Algebra
5 problèmes semblables à :
\frac { 3 x } { 5 } + \frac { 4 } { x } - \frac { 2 x } { y } = 2
Partager
Copié dans le Presse-papiers
xy\times 3x+5y\times 4-5x\times 2x=10xy
La variable y ne peut pas être égale à 0 étant donné que la division par zéro n’est pas définie. Multipliez les deux côtés de l’équation par 5xy, le plus petit commun multiple de 5,x,y.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Multiplier x et x pour obtenir x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Multiplier 5 et 4 pour obtenir 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Multiplier x et x pour obtenir x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Multiplier 5 et 2 pour obtenir 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Soustraire 10xy des deux côtés.
x^{2}y\times 3+20y-10xy=10x^{2}
Ajouter 10x^{2} aux deux côtés. Une valeur plus zéro donne la même valeur.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Combiner tous les termes contenant y.
\left(3x^{2}-10x+20\right)y=10x^{2}
L’équation utilise le format standard.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Divisez les deux côtés par 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}
La division par 3x^{2}-10x+20 annule la multiplication par 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
La variable y ne peut pas être égale à 0.
xy\times 3x+5y\times 4-5x\times 2x=10xy
La variable y ne peut pas être égale à 0 étant donné que la division par zéro n’est pas définie. Multipliez les deux côtés de l’équation par 5xy, le plus petit commun multiple de 5,x,y.
x^{2}y\times 3+5y\times 4-5x\times 2x=10xy
Multiplier x et x pour obtenir x^{2}.
x^{2}y\times 3+20y-5x\times 2x=10xy
Multiplier 5 et 4 pour obtenir 20.
x^{2}y\times 3+20y-5x^{2}\times 2=10xy
Multiplier x et x pour obtenir x^{2}.
x^{2}y\times 3+20y-10x^{2}=10xy
Multiplier 5 et 2 pour obtenir 10.
x^{2}y\times 3+20y-10x^{2}-10xy=0
Soustraire 10xy des deux côtés.
x^{2}y\times 3+20y-10xy=10x^{2}
Ajouter 10x^{2} aux deux côtés. Une valeur plus zéro donne la même valeur.
\left(x^{2}\times 3+20-10x\right)y=10x^{2}
Combiner tous les termes contenant y.
\left(3x^{2}-10x+20\right)y=10x^{2}
L’équation utilise le format standard.
\frac{\left(3x^{2}-10x+20\right)y}{3x^{2}-10x+20}=\frac{10x^{2}}{3x^{2}-10x+20}
Divisez les deux côtés par 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}
La division par 3x^{2}-10x+20 annule la multiplication par 3x^{2}-10x+20.
y=\frac{10x^{2}}{3x^{2}-10x+20}\text{, }y\neq 0
La variable y ne peut pas être égale à 0.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}