Évaluer
\frac{3x^{2}}{2}
Développer
\frac{3x^{2}}{2}
Graphique
Partager
Copié dans le Presse-papiers
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utiliser la distributivité pour multiplier \frac{1}{2}x par 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utiliser la distributivité pour multiplier 3 par x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utilisez la distributivité pour multiplier 3x+3 par x-1 et combiner les termes semblables.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Combiner -\frac{1}{2}x^{2} et 3x^{2} pour obtenir \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utilisez la formule du binôme \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pour développer \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utiliser la distributivité pour multiplier x par x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Pour trouver l’opposé de x^{3}-2x^{2}+x, recherchez l’opposé de chaque terme.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Combiner \frac{5}{2}x^{2} et 2x^{2} pour obtenir \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Combiner \frac{3}{2}x et -x pour obtenir \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Utilisez la formule du binôme \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} pour développer \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Combiner -x^{3} et x^{3} pour obtenir 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(7x-8\right)
Combiner \frac{9}{2}x^{2} et -3x^{2} pour obtenir \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(7x-8\right)
Combiner \frac{1}{2}x et 3x pour obtenir \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(7x-8\right)
Soustraire 1 de -3 pour obtenir -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{7}{2}x+4
Utiliser la distributivité pour multiplier -\frac{1}{2} par 7x-8.
\frac{3}{2}x^{2}-4+4
Combiner \frac{7}{2}x et -\frac{7}{2}x pour obtenir 0.
\frac{3}{2}x^{2}
Additionner -4 et 4 pour obtenir 0.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utiliser la distributivité pour multiplier \frac{1}{2}x par 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utiliser la distributivité pour multiplier 3 par x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utilisez la distributivité pour multiplier 3x+3 par x-1 et combiner les termes semblables.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Combiner -\frac{1}{2}x^{2} et 3x^{2} pour obtenir \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utilisez la formule du binôme \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pour développer \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Utiliser la distributivité pour multiplier x par x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Pour trouver l’opposé de x^{3}-2x^{2}+x, recherchez l’opposé de chaque terme.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Combiner \frac{5}{2}x^{2} et 2x^{2} pour obtenir \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(7x-8\right)
Combiner \frac{3}{2}x et -x pour obtenir \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Utilisez la formule du binôme \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} pour développer \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(7x-8\right)
Combiner -x^{3} et x^{3} pour obtenir 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(7x-8\right)
Combiner \frac{9}{2}x^{2} et -3x^{2} pour obtenir \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(7x-8\right)
Combiner \frac{1}{2}x et 3x pour obtenir \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(7x-8\right)
Soustraire 1 de -3 pour obtenir -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{7}{2}x+4
Utiliser la distributivité pour multiplier -\frac{1}{2} par 7x-8.
\frac{3}{2}x^{2}-4+4
Combiner \frac{7}{2}x et -\frac{7}{2}x pour obtenir 0.
\frac{3}{2}x^{2}
Additionner -4 et 4 pour obtenir 0.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}