Évaluer
\frac{\sqrt{5}}{3}\approx 0,745355992
Quiz
Arithmetic
\frac { \sqrt { 5 } \div [ \sqrt { 8 } + \sqrt { 5 } ] } { \sqrt { 8 } - \sqrt { 5 } }
Partager
Copié dans le Presse-papiers
\frac{\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}}}{\sqrt{8}-\sqrt{5}}
Factoriser 8=2^{2}\times 2. Réécrivez la racine carrée du \sqrt{2^{2}\times 2} de produit en tant que produit des racines carrées \sqrt{2^{2}}\sqrt{2}. Extraire la racine carrée de 2^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)}}{\sqrt{8}-\sqrt{5}}
Rationaliser le dénominateur de \frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}} en multipliant le numérateur et le dénominateur par 2\sqrt{2}-\sqrt{5}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Considérer \left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right). Une multiplication peut être transformée en différence de carrés à l’aide de la règle suivante : \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Étendre \left(2\sqrt{2}\right)^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Calculer 2 à la puissance 2 et obtenir 4.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Le carré de \sqrt{2} est 2.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Multiplier 4 et 2 pour obtenir 8.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-5}}{\sqrt{8}-\sqrt{5}}
Le carré de \sqrt{5} est 5.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{\sqrt{8}-\sqrt{5}}
Soustraire 5 de 8 pour obtenir 3.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}}
Factoriser 8=2^{2}\times 2. Réécrivez la racine carrée du \sqrt{2^{2}\times 2} de produit en tant que produit des racines carrées \sqrt{2^{2}}\sqrt{2}. Extraire la racine carrée de 2^{2}.
\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3\left(2\sqrt{2}-\sqrt{5}\right)}
Exprimer \frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}} sous la forme d’une fraction seule.
\frac{\sqrt{5}}{3}
Annuler -\sqrt{5}+2\sqrt{2} dans le numérateur et le dénominateur.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}