Laktawan sa pangunahing nilalaman
I-factor
Tick mark Image
I-evaluate
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

\left(2x-3\right)\left(2x^{2}-9x+4\right)
Sa Rational Root Theorem, ang lahat ng rational root ng polynomial ay nasa anyong \frac{p}{q}, kung saan hinahati ng p ang constant term -12 at hinahati ng q ang leading coefficient 4. Ang isa sa mga ganoong root ay \frac{3}{2}. I-factor ang polynomial sa pamamagitan ng paghahati nito sa 2x-3.
a+b=-9 ab=2\times 4=8
Isaalang-alang ang 2x^{2}-9x+4. I-factor ang expression ayon sa grouping. Dapat munang isulat ang expression bilang 2x^{2}+ax+bx+4. Para mahanap ang a at b, mag-set up ng system na iso-solve.
-1,-8 -2,-4
Dahil positive ang ab, magkapareho ang mga sign ng a at b. Dahil negative ang a+b, parehong negative ang a at b. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na 8.
-1-8=-9 -2-4=-6
Kalkulahin ang sum para sa bawat pares.
a=-8 b=-1
Ang solution ay ang pair na may sum na -9.
\left(2x^{2}-8x\right)+\left(-x+4\right)
I-rewrite ang 2x^{2}-9x+4 bilang \left(2x^{2}-8x\right)+\left(-x+4\right).
2x\left(x-4\right)-\left(x-4\right)
I-factor out ang 2x sa unang grupo at ang -1 sa pangalawang grupo.
\left(x-4\right)\left(2x-1\right)
I-factor out ang common term na x-4 gamit ang distributive property.
\left(x-4\right)\left(2x-3\right)\left(2x-1\right)
I-rewrite ang kumpletong naka-factor na expression.