Laktawan sa pangunahing nilalaman
I-evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
I-evaluate
Tick mark Image

Ibahagi

-\sqrt{\frac{9}{4}-3\sqrt{9}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Kalkulahin ang -3 sa power ng 2 at kunin ang 9.
-\sqrt{\frac{9}{4}-3\times 3}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Kalkulahin ang square root ng 9 at makuha ang 3.
-\sqrt{\frac{9}{4}-9}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
I-multiply ang 3 at 3 para makuha ang 9.
-\sqrt{-\frac{27}{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
I-subtract ang 9 mula sa \frac{9}{4} para makuha ang -\frac{27}{4}.
-\frac{\sqrt{-27}}{\sqrt{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
I-rewrite ang square root ng division na \sqrt{-\frac{27}{4}} bilang division ng mga square root na \frac{\sqrt{-27}}{\sqrt{4}}.
-\frac{3i\sqrt{3}}{\sqrt{4}}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
I-factor out ang -27=\left(3i\right)^{2}\times 3. I-rewrite ang square root ng product na \sqrt{\left(3i\right)^{2}\times 3} bilang product ng mga square root na \sqrt{\left(3i\right)^{2}}\sqrt{3}. Kunin ang square root ng \left(3i\right)^{2}.
-\frac{3i\sqrt{3}}{2}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Kalkulahin ang square root ng 4 at makuha ang 2.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{\left(-2\right)^{2}\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
I-divide ang 3i\sqrt{3} gamit ang 2 para makuha ang \frac{3}{2}i\sqrt{3}.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{4\times 3^{2}}}{\left(-\sqrt{4}\right)^{2}}
Kalkulahin ang -2 sa power ng 2 at kunin ang 4.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{4\times 9}}{\left(-\sqrt{4}\right)^{2}}
Kalkulahin ang 3 sa power ng 2 at kunin ang 9.
-\frac{3}{2}i\sqrt{3}+\frac{\sqrt{36}}{\left(-\sqrt{4}\right)^{2}}
I-multiply ang 4 at 9 para makuha ang 36.
-\frac{3}{2}i\sqrt{3}+\frac{6}{\left(-\sqrt{4}\right)^{2}}
Kalkulahin ang square root ng 36 at makuha ang 6.
-\frac{3}{2}i\sqrt{3}+\frac{6}{\left(-2\right)^{2}}
Kalkulahin ang square root ng 4 at makuha ang 2.
-\frac{3}{2}i\sqrt{3}+\frac{6}{4}
Kalkulahin ang -2 sa power ng 2 at kunin ang 4.
-\frac{3}{2}i\sqrt{3}+\frac{3}{2}
Bawasan ang fraction \frac{6}{4} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.