Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x^{2}+x-20=-8
Gamitin ang distributive property para i-multiply ang x-4 sa x+5 at para pagsamahin ang magkakatulad na term.
x^{2}+x-20+8=0
Idagdag ang 8 sa parehong bahagi.
x^{2}+x-12=0
Idagdag ang -20 at 8 para makuha ang -12.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, 1 para sa b, at -12 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
I-square ang 1.
x=\frac{-1±\sqrt{1+48}}{2}
I-multiply ang -4 times -12.
x=\frac{-1±\sqrt{49}}{2}
Idagdag ang 1 sa 48.
x=\frac{-1±7}{2}
Kunin ang square root ng 49.
x=\frac{6}{2}
Ngayon, lutasin ang equation na x=\frac{-1±7}{2} kapag ang ± ay plus. Idagdag ang -1 sa 7.
x=3
I-divide ang 6 gamit ang 2.
x=-\frac{8}{2}
Ngayon, lutasin ang equation na x=\frac{-1±7}{2} kapag ang ± ay minus. I-subtract ang 7 mula sa -1.
x=-4
I-divide ang -8 gamit ang 2.
x=3 x=-4
Nalutas na ang equation.
x^{2}+x-20=-8
Gamitin ang distributive property para i-multiply ang x-4 sa x+5 at para pagsamahin ang magkakatulad na term.
x^{2}+x=-8+20
Idagdag ang 20 sa parehong bahagi.
x^{2}+x=12
Idagdag ang -8 at 20 para makuha ang 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
I-divide ang 1, ang coefficient ng x term, gamit ang 2 para makuha ang \frac{1}{2}. Pagkatapos ay idagdag ang square ng \frac{1}{2} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
I-square ang \frac{1}{2} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Idagdag ang 12 sa \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
I-factor ang x^{2}+x+\frac{1}{4}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Kunin ang square root ng magkabilang dulo ng equation.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Pasimplehin.
x=3 x=-4
I-subtract ang \frac{1}{2} mula sa magkabilang dulo ng equation.