I-evaluate
-\frac{4xy}{15}
Palawakin
-\frac{4xy}{15}
Ibahagi
Kinopya sa clipboard
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(x-\frac{1}{5}y\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Para hanapin ang kabaligtaran ng \frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}, hanapin ang kabaligtaran ng bawat term.
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang \frac{1}{25}y^{2} at -\frac{64}{225}y^{2} para makuha ang -\frac{11}{45}y^{2}.
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{2}{5}xy at -\frac{88}{15}yx para makuha ang -\frac{94}{15}xy.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang x^{2} at -\frac{121}{4}x^{2} para makuha ang -\frac{117}{4}x^{2}.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}.
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{117}{4}x^{2} at \frac{81}{4}x^{2} para makuha ang -9x^{2}.
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{94}{15}xy at 6xy para makuha ang -\frac{4}{15}xy.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{11}{45}y^{2} at \frac{4}{9}y^{2} para makuha ang \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Isaalang-alang ang \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Palawakin ang \left(\frac{1}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Kalkulahin ang \frac{1}{5} sa power ng 2 at kunin ang \frac{1}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Palawakin ang \left(3x\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Kalkulahin ang 3 sa power ng 2 at kunin ang 9.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Palawakin ang \left(-\frac{2}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Kalkulahin ang -\frac{2}{5} sa power ng 2 at kunin ang \frac{4}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Pagsamahin ang \frac{1}{25}y^{2} at \frac{4}{25}y^{2} para makuha ang \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
Para hanapin ang kabaligtaran ng \frac{1}{5}y^{2}-9x^{2}, hanapin ang kabaligtaran ng bawat term.
-9x^{2}-\frac{4}{15}xy+9x^{2}
Pagsamahin ang \frac{1}{5}y^{2} at -\frac{1}{5}y^{2} para makuha ang 0.
-\frac{4}{15}xy
Pagsamahin ang -9x^{2} at 9x^{2} para makuha ang 0.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(x-\frac{1}{5}y\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Para hanapin ang kabaligtaran ng \frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}, hanapin ang kabaligtaran ng bawat term.
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang \frac{1}{25}y^{2} at -\frac{64}{225}y^{2} para makuha ang -\frac{11}{45}y^{2}.
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{2}{5}xy at -\frac{88}{15}yx para makuha ang -\frac{94}{15}xy.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang x^{2} at -\frac{121}{4}x^{2} para makuha ang -\frac{117}{4}x^{2}.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}.
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{117}{4}x^{2} at \frac{81}{4}x^{2} para makuha ang -9x^{2}.
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{94}{15}xy at 6xy para makuha ang -\frac{4}{15}xy.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Pagsamahin ang -\frac{11}{45}y^{2} at \frac{4}{9}y^{2} para makuha ang \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Isaalang-alang ang \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Palawakin ang \left(\frac{1}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Kalkulahin ang \frac{1}{5} sa power ng 2 at kunin ang \frac{1}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Palawakin ang \left(3x\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Kalkulahin ang 3 sa power ng 2 at kunin ang 9.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Palawakin ang \left(-\frac{2}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Kalkulahin ang -\frac{2}{5} sa power ng 2 at kunin ang \frac{4}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Pagsamahin ang \frac{1}{25}y^{2} at \frac{4}{25}y^{2} para makuha ang \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
Para hanapin ang kabaligtaran ng \frac{1}{5}y^{2}-9x^{2}, hanapin ang kabaligtaran ng bawat term.
-9x^{2}-\frac{4}{15}xy+9x^{2}
Pagsamahin ang \frac{1}{5}y^{2} at -\frac{1}{5}y^{2} para makuha ang 0.
-\frac{4}{15}xy
Pagsamahin ang -9x^{2} at 9x^{2} para makuha ang 0.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}