Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-factor
Tick mark Image

Ibahagi

\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{7}{3}\times \frac{7}{3}}{2+\frac{1}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Idagdag ang \frac{1}{3} at 2 para makuha ang \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{49}{9}}{2+\frac{1}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-multiply ang \frac{7}{3} at \frac{7}{3} para makuha ang \frac{49}{9}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{49}{9}}{\frac{5}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Idagdag ang 2 at \frac{1}{2} para makuha ang \frac{5}{2}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{49}{9}\times \frac{2}{5}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-divide ang \frac{49}{9} gamit ang \frac{5}{2} sa pamamagitan ng pagmu-multiply sa \frac{49}{9} gamit ang reciprocal ng \frac{5}{2}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{98}{45}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-multiply ang \frac{49}{9} at \frac{2}{5} para makuha ang \frac{98}{45}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{98}{45}}{\frac{7}{3}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Idagdag ang \frac{5}{6} at \frac{3}{2} para makuha ang \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{98}{45}\times \frac{3}{7}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-divide ang \frac{98}{45} gamit ang \frac{7}{3} sa pamamagitan ng pagmu-multiply sa \frac{98}{45} gamit ang reciprocal ng \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{14}{15}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-multiply ang \frac{98}{45} at \frac{3}{7} para makuha ang \frac{14}{15}.
\sqrt{6\left(\frac{5}{13}\left(\frac{29}{15}-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Idagdag ang \frac{14}{15} at 1 para makuha ang \frac{29}{15}.
\sqrt{6\left(\frac{5}{13}\times \frac{26}{15}-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-subtract ang \frac{1}{5} mula sa \frac{29}{15} para makuha ang \frac{26}{15}.
\sqrt{6\left(\frac{2}{3}-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-multiply ang \frac{5}{13} at \frac{26}{15} para makuha ang \frac{2}{3}.
\sqrt{6\times \frac{1}{6}\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-subtract ang \frac{1}{2} mula sa \frac{2}{3} para makuha ang \frac{1}{6}.
\sqrt{\left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
I-multiply ang 6 at \frac{1}{6} para makuha ang 1.
\sqrt{\left(\frac{5}{9}\times \frac{\frac{9}{5}}{\frac{5}{2}}\right)^{2}}
Idagdag ang \frac{2}{15} at \frac{5}{3} para makuha ang \frac{9}{5}.
\sqrt{\left(\frac{5}{9}\times \frac{9}{5}\times \frac{2}{5}\right)^{2}}
I-divide ang \frac{9}{5} gamit ang \frac{5}{2} sa pamamagitan ng pagmu-multiply sa \frac{9}{5} gamit ang reciprocal ng \frac{5}{2}.
\sqrt{\left(\frac{5}{9}\times \frac{18}{25}\right)^{2}}
I-multiply ang \frac{9}{5} at \frac{2}{5} para makuha ang \frac{18}{25}.
\sqrt{\left(\frac{2}{5}\right)^{2}}
I-multiply ang \frac{5}{9} at \frac{18}{25} para makuha ang \frac{2}{5}.
\sqrt{\frac{4}{25}}
Kalkulahin ang \frac{2}{5} sa power ng 2 at kunin ang \frac{4}{25}.
\frac{2}{5}
I-rewrite ang square root ng division na \frac{4}{25} bilang division ng mga square root na \frac{\sqrt{4}}{\sqrt{25}}. Kunin ang square root ng numerator at denominator.