Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-factor
Tick mark Image

Ibahagi

\left(\frac{1}{3}\right)^{8}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 4! at 4! para makuha ang \left(4!\right)^{2}.
\frac{1}{6561}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{1}{3} sa power ng 8 at kunin ang \frac{1}{6561}.
\frac{1}{6561}+\frac{8\times 2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ipakita ang 8\times \frac{2}{3} bilang isang single fraction.
\frac{1}{6561}+\frac{16}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 8 at 2 para makuha ang 16.
\frac{1}{6561}+\frac{16}{3}\times \frac{1}{2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{1}{3} sa power ng 7 at kunin ang \frac{1}{2187}.
\frac{1}{6561}+\frac{16\times 1}{3\times 2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang \frac{16}{3} sa \frac{1}{2187} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{1}{6561}+\frac{16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Gawin ang mga multiplication sa fraction na \frac{16\times 1}{3\times 2187}.
\frac{1+16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Dahil may parehong denominator ang \frac{1}{6561} at \frac{16}{6561}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{17}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Idagdag ang 1 at 16 para makuha ang 17.
\frac{17}{6561}+\frac{40320}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 8 ay 40320.
\frac{17}{6561}+\frac{40320}{720\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 6 ay 720.
\frac{17}{6561}+\frac{40320}{720\times 2}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 2 ay 2.
\frac{17}{6561}+\frac{40320}{1440}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 720 at 2 para makuha ang 1440.
\frac{17}{6561}+28\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-divide ang 40320 gamit ang 1440 para makuha ang 28.
\frac{17}{6561}+28\times \frac{4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{2}{3} sa power ng 2 at kunin ang \frac{4}{9}.
\frac{17}{6561}+\frac{28\times 4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ipakita ang 28\times \frac{4}{9} bilang isang single fraction.
\frac{17}{6561}+\frac{112}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 28 at 4 para makuha ang 112.
\frac{17}{6561}+\frac{112}{9}\times \frac{1}{729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{1}{3} sa power ng 6 at kunin ang \frac{1}{729}.
\frac{17}{6561}+\frac{112\times 1}{9\times 729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang \frac{112}{9} sa \frac{1}{729} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{17}{6561}+\frac{112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Gawin ang mga multiplication sa fraction na \frac{112\times 1}{9\times 729}.
\frac{17+112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Dahil may parehong denominator ang \frac{17}{6561} at \frac{112}{6561}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{129}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Idagdag ang 17 at 112 para makuha ang 129.
\frac{43}{2187}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Bawasan ang fraction \frac{129}{6561} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 3.
\frac{43}{2187}+\frac{40320}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 8 ay 40320.
\frac{43}{2187}+\frac{40320}{120\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 5 ay 120.
\frac{43}{2187}+\frac{40320}{120\times 6}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 3 ay 6.
\frac{43}{2187}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 120 at 6 para makuha ang 720.
\frac{43}{2187}+56\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-divide ang 40320 gamit ang 720 para makuha ang 56.
\frac{43}{2187}+56\times \frac{8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{2}{3} sa power ng 3 at kunin ang \frac{8}{27}.
\frac{43}{2187}+\frac{56\times 8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ipakita ang 56\times \frac{8}{27} bilang isang single fraction.
\frac{43}{2187}+\frac{448}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 56 at 8 para makuha ang 448.
\frac{43}{2187}+\frac{448}{27}\times \frac{1}{243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{1}{3} sa power ng 5 at kunin ang \frac{1}{243}.
\frac{43}{2187}+\frac{448\times 1}{27\times 243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang \frac{448}{27} sa \frac{1}{243} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{43}{2187}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Gawin ang mga multiplication sa fraction na \frac{448\times 1}{27\times 243}.
\frac{129}{6561}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang least common multiple ng 2187 at 6561 ay 6561. I-convert ang \frac{43}{2187} at \frac{448}{6561} sa mga fraction na may denominator na 6561.
\frac{129+448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Dahil may parehong denominator ang \frac{129}{6561} at \frac{448}{6561}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{577}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Idagdag ang 129 at 448 para makuha ang 577.
\frac{577}{6561}+\frac{40320}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 8 ay 40320.
\frac{577}{6561}+\frac{40320}{24^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 4 ay 24.
\frac{577}{6561}+\frac{40320}{576}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang 24 sa power ng 2 at kunin ang 576.
\frac{577}{6561}+70\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-divide ang 40320 gamit ang 576 para makuha ang 70.
\frac{577}{6561}+70\times \frac{16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{2}{3} sa power ng 4 at kunin ang \frac{16}{81}.
\frac{577}{6561}+\frac{70\times 16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ipakita ang 70\times \frac{16}{81} bilang isang single fraction.
\frac{577}{6561}+\frac{1120}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 70 at 16 para makuha ang 1120.
\frac{577}{6561}+\frac{1120}{81}\times \frac{1}{81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{1}{3} sa power ng 4 at kunin ang \frac{1}{81}.
\frac{577}{6561}+\frac{1120\times 1}{81\times 81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang \frac{1120}{81} sa \frac{1}{81} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{577}{6561}+\frac{1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Gawin ang mga multiplication sa fraction na \frac{1120\times 1}{81\times 81}.
\frac{577+1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Dahil may parehong denominator ang \frac{577}{6561} at \frac{1120}{6561}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{1697}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Idagdag ang 577 at 1120 para makuha ang 1697.
\frac{1697}{6561}+\frac{40320}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 8 ay 40320.
\frac{1697}{6561}+\frac{40320}{6\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 3 ay 6.
\frac{1697}{6561}+\frac{40320}{6\times 120}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ang factorial ng 5 ay 120.
\frac{1697}{6561}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 6 at 120 para makuha ang 720.
\frac{1697}{6561}+56\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
I-divide ang 40320 gamit ang 720 para makuha ang 56.
\frac{1697}{6561}+56\times \frac{32}{243}\times \left(\frac{1}{3}\right)^{3}
Kalkulahin ang \frac{2}{3} sa power ng 5 at kunin ang \frac{32}{243}.
\frac{1697}{6561}+\frac{56\times 32}{243}\times \left(\frac{1}{3}\right)^{3}
Ipakita ang 56\times \frac{32}{243} bilang isang single fraction.
\frac{1697}{6561}+\frac{1792}{243}\times \left(\frac{1}{3}\right)^{3}
I-multiply ang 56 at 32 para makuha ang 1792.
\frac{1697}{6561}+\frac{1792}{243}\times \frac{1}{27}
Kalkulahin ang \frac{1}{3} sa power ng 3 at kunin ang \frac{1}{27}.
\frac{1697}{6561}+\frac{1792\times 1}{243\times 27}
I-multiply ang \frac{1792}{243} sa \frac{1}{27} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{1697}{6561}+\frac{1792}{6561}
Gawin ang mga multiplication sa fraction na \frac{1792\times 1}{243\times 27}.
\frac{1697+1792}{6561}
Dahil may parehong denominator ang \frac{1697}{6561} at \frac{1792}{6561}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{3489}{6561}
Idagdag ang 1697 at 1792 para makuha ang 3489.
\frac{1163}{2187}
Bawasan ang fraction \frac{3489}{6561} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 3.