Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
I-solve ang x, y (complex solution)
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

y=mx-2m+\sqrt{2}
Isaalang-alang ang pangalawang equation. Gamitin ang distributive property para i-multiply ang m gamit ang x-2.
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
I-substitute ang mx-2m+\sqrt{2} para sa y sa kabilang equation na x^{2}+2y^{2}=8.
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
I-square ang mx-2m+\sqrt{2}.
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
I-multiply ang 2 times m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Idagdag ang x^{2} sa 2m^{2}x^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
I-subtract ang 8 mula sa magkabilang dulo ng equation.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1+2m^{2} para sa a, 2\times 2m\left(-2m+\sqrt{2}\right) para sa b, at -4+8m^{2}-8m\sqrt{2} para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
I-square ang 2\times 2m\left(-2m+\sqrt{2}\right).
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
I-multiply ang -4 times 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
I-multiply ang -4-8m^{2} times -4+8m^{2}-8m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Idagdag ang 16m^{2}\left(-2m+\sqrt{2}\right)^{2} sa 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
Kunin ang square root ng 16+32m^{2}+32m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
I-multiply ang 2 times 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Ngayon, lutasin ang equation na x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} kapag ang ± ay plus. Idagdag ang -4m\left(-2m+\sqrt{2}\right) sa 4\sqrt{1+2m^{2}+2m\sqrt{2}}.
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
I-divide ang -4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}} gamit ang 2+4m^{2}.
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
Ngayon, lutasin ang equation na x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} kapag ang ± ay minus. I-subtract ang 4\sqrt{1+2m^{2}+2m\sqrt{2}} mula sa -4m\left(-2m+\sqrt{2}\right).
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
I-divide ang 8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}} gamit ang 2+4m^{2}.
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
May dalawang solution para sa x: \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} at \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}. I-substitute ang \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} para sa x sa equation na y=mx-2m+\sqrt{2} para hanapin ang nauugnay na solution para sa y na umaakma sa dalawang equation.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
I-multiply ang m times \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Ngayon, i-substitute ang \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} para sa x sa equation na y=mx-2m+\sqrt{2} at i-solve para hanapin ang nauugnay na solution para sa y na umaakma sa dalawang equation.
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
I-multiply ang m times \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Nalutas na ang system.