Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
Palawakin
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
I-factor out ang x^{2}+4x+3. I-factor out ang x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Para magdagdag o mag-subtract ng mga expression, i-expand ang mga iyon para gawing magkakapareho ang mga denominator ng mga ito. Ang least common multiple ng \left(x+1\right)\left(x+3\right) at \left(x+2\right)\left(x+3\right) ay \left(x+1\right)\left(x+2\right)\left(x+3\right). I-multiply ang \frac{x-1}{\left(x+1\right)\left(x+3\right)} times \frac{x+2}{x+2}. I-multiply ang \frac{2}{\left(x+2\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Dahil may parehong denominator ang \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} at \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Gawin ang mga pag-multiply sa \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Pagsamahin ang magkakatulad na term sa x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
I-factor ang mga expression na hindi pa na-factor sa \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
I-cancel out ang x+3 sa parehong numerator at denominator.
\frac{x}{x^{2}+3x+2}
Palawakin ang \left(x+1\right)\left(x+2\right).
\frac{x-1}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}
I-factor out ang x^{2}+4x+3. I-factor out ang x^{2}+5x+6.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Para magdagdag o mag-subtract ng mga expression, i-expand ang mga iyon para gawing magkakapareho ang mga denominator ng mga ito. Ang least common multiple ng \left(x+1\right)\left(x+3\right) at \left(x+2\right)\left(x+3\right) ay \left(x+1\right)\left(x+2\right)\left(x+3\right). I-multiply ang \frac{x-1}{\left(x+1\right)\left(x+3\right)} times \frac{x+2}{x+2}. I-multiply ang \frac{2}{\left(x+2\right)\left(x+3\right)} times \frac{x+1}{x+1}.
\frac{\left(x-1\right)\left(x+2\right)+2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Dahil may parehong denominator ang \frac{\left(x-1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)} at \frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{x^{2}+2x-x-2+2x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Gawin ang mga pag-multiply sa \left(x-1\right)\left(x+2\right)+2\left(x+1\right).
\frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Pagsamahin ang magkakatulad na term sa x^{2}+2x-x-2+2x+2.
\frac{x\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}
I-factor ang mga expression na hindi pa na-factor sa \frac{x^{2}+3x}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}.
\frac{x}{\left(x+1\right)\left(x+2\right)}
I-cancel out ang x+3 sa parehong numerator at denominator.
\frac{x}{x^{2}+3x+2}
Palawakin ang \left(x+1\right)\left(x+2\right).