Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
Palawakin
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
I-factor out ang 2x^{2}-7x+3. I-factor out ang 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Para magdagdag o mag-subtract ng mga expression, i-expand ang mga iyon para gawing magkakapareho ang mga denominator ng mga ito. Ang least common multiple ng \left(x-3\right)\left(2x-1\right) at \left(2x-1\right)\left(2x+3\right) ay \left(x-3\right)\left(2x-1\right)\left(2x+3\right). I-multiply ang \frac{x}{\left(x-3\right)\left(2x-1\right)} times \frac{2x+3}{2x+3}. I-multiply ang \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} times \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Dahil may parehong denominator ang \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} at \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Gawin ang mga pag-multiply sa x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Pagsamahin ang magkakatulad na term sa 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
I-factor out ang 2x^{2}-3x.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Para magdagdag o mag-subtract ng mga expression, i-expand ang mga iyon para gawing magkakapareho ang mga denominator ng mga ito. Ang least common multiple ng \left(x-3\right)\left(2x-1\right)\left(2x+3\right) at x\left(2x-3\right) ay x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right). I-multiply ang \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} times \frac{x\left(2x-3\right)}{x\left(2x-3\right)}. I-multiply ang \frac{x^{2}+1}{x\left(2x-3\right)} times \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Dahil may parehong denominator ang \frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} at \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}, ibawas ang mga ito sa pamamagitan ng pagbawas sa mga numerator ng mga ito.
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Gawin ang mga pag-multiply sa \left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Pagsamahin ang magkakatulad na term sa 6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9.
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
Palawakin ang x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
I-factor out ang 2x^{2}-7x+3. I-factor out ang 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Para magdagdag o mag-subtract ng mga expression, i-expand ang mga iyon para gawing magkakapareho ang mga denominator ng mga ito. Ang least common multiple ng \left(x-3\right)\left(2x-1\right) at \left(2x-1\right)\left(2x+3\right) ay \left(x-3\right)\left(2x-1\right)\left(2x+3\right). I-multiply ang \frac{x}{\left(x-3\right)\left(2x-1\right)} times \frac{2x+3}{2x+3}. I-multiply ang \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} times \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Dahil may parehong denominator ang \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} at \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}, pagsamahin ang mga ito sa pamamagitan ng pagsasama sa mga numerator ng mga ito.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Gawin ang mga pag-multiply sa x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Pagsamahin ang magkakatulad na term sa 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
I-factor out ang 2x^{2}-3x.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Para magdagdag o mag-subtract ng mga expression, i-expand ang mga iyon para gawing magkakapareho ang mga denominator ng mga ito. Ang least common multiple ng \left(x-3\right)\left(2x-1\right)\left(2x+3\right) at x\left(2x-3\right) ay x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right). I-multiply ang \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} times \frac{x\left(2x-3\right)}{x\left(2x-3\right)}. I-multiply ang \frac{x^{2}+1}{x\left(2x-3\right)} times \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Dahil may parehong denominator ang \frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} at \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}, ibawas ang mga ito sa pamamagitan ng pagbawas sa mga numerator ng mga ito.
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Gawin ang mga pag-multiply sa \left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Pagsamahin ang magkakatulad na term sa 6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9.
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
Palawakin ang x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right).