Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
Palawakin
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang \frac{1}{2}x gamit ang 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang 3 gamit ang x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang 3x+3 sa x-1 at para pagsamahin ang magkakatulad na term.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang -\frac{1}{2}x^{2} at 3x^{2} para makuha ang \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang x gamit ang x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Para hanapin ang kabaligtaran ng x^{3}-2x^{2}+x, hanapin ang kabaligtaran ng bawat term.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{5}{2}x^{2} at 2x^{2} para makuha ang \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{3}{2}x at -x para makuha ang \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Gamitin ang binomial theorem na \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} para palawakin ang \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang -x^{3} at x^{3} para makuha ang 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{9}{2}x^{2} at -3x^{2} para makuha ang \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{1}{2}x at 3x para makuha ang \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
I-subtract ang 1 mula sa -3 para makuha ang -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
Gamitin ang distributive property para i-multiply ang -\frac{1}{2} gamit ang 2x-8.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
Pagsamahin ang \frac{7}{2}x at -x para makuha ang \frac{5}{2}x.
\frac{5}{2}x+\frac{3}{2}x^{2}
Idagdag ang -4 at 4 para makuha ang 0.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang \frac{1}{2}x gamit ang 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang 3 gamit ang x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang 3x+3 sa x-1 at para pagsamahin ang magkakatulad na term.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang -\frac{1}{2}x^{2} at 3x^{2} para makuha ang \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Gamitin ang distributive property para i-multiply ang x gamit ang x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Para hanapin ang kabaligtaran ng x^{3}-2x^{2}+x, hanapin ang kabaligtaran ng bawat term.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{5}{2}x^{2} at 2x^{2} para makuha ang \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{3}{2}x at -x para makuha ang \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Gamitin ang binomial theorem na \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} para palawakin ang \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang -x^{3} at x^{3} para makuha ang 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{9}{2}x^{2} at -3x^{2} para makuha ang \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
Pagsamahin ang \frac{1}{2}x at 3x para makuha ang \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
I-subtract ang 1 mula sa -3 para makuha ang -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
Gamitin ang distributive property para i-multiply ang -\frac{1}{2} gamit ang 2x-8.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
Pagsamahin ang \frac{7}{2}x at -x para makuha ang \frac{5}{2}x.
\frac{5}{2}x+\frac{3}{2}x^{2}
Idagdag ang -4 at 4 para makuha ang 0.