Ratkaise muuttujan y suhteen
y=\frac{1+\sqrt{7}i}{2}\approx 0,5+1,322875656i
y=\frac{-\sqrt{7}i+1}{2}\approx 0,5-1,322875656i
Tietokilpailu
Complex Number
y ^ { 2 } - y + 2 = 0
Jakaa
Kopioitu leikepöydälle
y^{2}-y+2=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 2}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -1 ja c luvulla 2 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1-8}}{2}
Kerro -4 ja 2.
y=\frac{-\left(-1\right)±\sqrt{-7}}{2}
Lisää 1 lukuun -8.
y=\frac{-\left(-1\right)±\sqrt{7}i}{2}
Ota luvun -7 neliöjuuri.
y=\frac{1±\sqrt{7}i}{2}
Luvun -1 vastaluku on 1.
y=\frac{1+\sqrt{7}i}{2}
Ratkaise nyt yhtälö y=\frac{1±\sqrt{7}i}{2}, kun ± on plusmerkkinen. Lisää 1 lukuun i\sqrt{7}.
y=\frac{-\sqrt{7}i+1}{2}
Ratkaise nyt yhtälö y=\frac{1±\sqrt{7}i}{2}, kun ± on miinusmerkkinen. Vähennä i\sqrt{7} luvusta 1.
y=\frac{1+\sqrt{7}i}{2} y=\frac{-\sqrt{7}i+1}{2}
Yhtälö on nyt ratkaistu.
y^{2}-y+2=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
y^{2}-y+2-2=-2
Vähennä 2 yhtälön molemmilta puolilta.
y^{2}-y=-2
Kun luku 2 vähennetään itsestään, tulokseksi jää 0.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=-2+\left(-\frac{1}{2}\right)^{2}
Jaa -1 (x-termin kerroin) 2:lla, jolloin saadaan -\frac{1}{2}. Lisää sitten -\frac{1}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
y^{2}-y+\frac{1}{4}=-2+\frac{1}{4}
Korota -\frac{1}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
y^{2}-y+\frac{1}{4}=-\frac{7}{4}
Lisää -2 lukuun \frac{1}{4}.
\left(y-\frac{1}{2}\right)^{2}=-\frac{7}{4}
Jaa y^{2}-y+\frac{1}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
y-\frac{1}{2}=\frac{\sqrt{7}i}{2} y-\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Sievennä.
y=\frac{1+\sqrt{7}i}{2} y=\frac{-\sqrt{7}i+1}{2}
Lisää \frac{1}{2} yhtälön kummallekin puolelle.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}