Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-3 ab=1\left(-4\right)=-4
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa m^{2}+am+bm-4. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-4 2,-2
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -4.
1-4=-3 2-2=0
Laske kunkin parin summa.
a=-4 b=1
Ratkaisu on pari, joka antaa summa -3.
\left(m^{2}-4m\right)+\left(m-4\right)
Kirjoita \left(m^{2}-4m\right)+\left(m-4\right) uudelleen muodossa m^{2}-3m-4.
m\left(m-4\right)+m-4
Ota m tekijäksi lausekkeessa m^{2}-4m.
\left(m-4\right)\left(m+1\right)
Jaa yleinen termi m-4 käyttämällä osittelu lain mukaisesti-ominaisuutta.
m^{2}-3m-4=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
m=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Korota -3 neliöön.
m=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Kerro -4 ja -4.
m=\frac{-\left(-3\right)±\sqrt{25}}{2}
Lisää 9 lukuun 16.
m=\frac{-\left(-3\right)±5}{2}
Ota luvun 25 neliöjuuri.
m=\frac{3±5}{2}
Luvun -3 vastaluku on 3.
m=\frac{8}{2}
Ratkaise nyt yhtälö m=\frac{3±5}{2}, kun ± on plusmerkkinen. Lisää 3 lukuun 5.
m=4
Jaa 8 luvulla 2.
m=-\frac{2}{2}
Ratkaise nyt yhtälö m=\frac{3±5}{2}, kun ± on miinusmerkkinen. Vähennä 5 luvusta 3.
m=-1
Jaa -2 luvulla 2.
m^{2}-3m-4=\left(m-4\right)\left(m-\left(-1\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 4 kohteella x_{1} ja -1 kohteella x_{2}.
m^{2}-3m-4=\left(m-4\right)\left(m+1\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.