Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

36=x^{2}-5x
Laske lukujen x ja x-5 tulo käyttämällä osittelulakia.
x^{2}-5x=36
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella.
x^{2}-5x-36=0
Vähennä 36 molemmilta puolilta.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -5 ja c luvulla -36 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Korota -5 neliöön.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Kerro -4 ja -36.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
Lisää 25 lukuun 144.
x=\frac{-\left(-5\right)±13}{2}
Ota luvun 169 neliöjuuri.
x=\frac{5±13}{2}
Luvun -5 vastaluku on 5.
x=\frac{18}{2}
Ratkaise nyt yhtälö x=\frac{5±13}{2}, kun ± on plusmerkkinen. Lisää 5 lukuun 13.
x=9
Jaa 18 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{5±13}{2}, kun ± on miinusmerkkinen. Vähennä 13 luvusta 5.
x=-4
Jaa -8 luvulla 2.
x=9 x=-4
Yhtälö on nyt ratkaistu.
36=x^{2}-5x
Laske lukujen x ja x-5 tulo käyttämällä osittelulakia.
x^{2}-5x=36
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Jaa -5 (x-termin kerroin) 2:lla, jolloin saadaan -\frac{5}{2}. Lisää sitten -\frac{5}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
Korota -\frac{5}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
Lisää 36 lukuun \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
Jaa x^{2}-5x+\frac{25}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
Sievennä.
x=9 x=-4
Lisää \frac{5}{2} yhtälön kummallekin puolelle.